Activation of the transcription factor nuclear factor-kappa B (NF-κB) signaling pathway is associated with enhanced secretion of pro-inflammatory mediators and is thought to play a critical role in diseases hallmarked by inflammation, including cystic fibrosis (CF). Small nucleic acids that interfere with gene expression have been proposed as promising therapeutics for a number of diseases. However, applications have been limited by low cellular penetration and a lack of stability. Nano-sized carrier systems have been suggested as a means of improving the effectiveness of nucleic acid-based treatments. In this study, we successfully coated polysialic acid-N-trimethyl chitosan (PSA-TMC) nanoparticles with NF-κΒ decoy oligonucleotides (ODNs). To demonstrate anti-inflammatory activity, the decoy ODN-coated PSA-TMC nanoparticles were administered to an in vitro model of CF generated via interleukin-1β or P. aeruginosa lipopolysaccharides stimulation of IB3-1 bronchial epithelial cells. While free ODN and PSA-TMC nanoparticles coated with scrambled ODNs did not have substantial impacts on the inflammatory response, the decoy ODN-coated PSA-TMC nanoparticles were able to reduce the secretion of interleukin-6 and interleukin-8, pro-inflammatory mediators of CF, by the epithelial cells, particularly at longer time points. In general, the results suggest that NF-κB decoy ODN-coated TMC-PSA nanoparticles may serve as an effective method of altering the pro-inflammatory environment associated with CF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35296 | DOI Listing |
Arthritis Res Ther
November 2015
Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, NY, 13244, USA.
Introduction: The transcription factor nuclear factor-kappa B (NF-κB) is highly involved in regulation of a number of cellular processes, including production of inflammatory mediators. Thus, this transcription factor plays a role in pathology of many diseases, including rheumatoid arthritis, an autoimmune disease hallmarked by an imbalance of pro and anti-inflammatory cytokines. Small nucleic acids with sequences that mimic the native binding site of NF-κB have been proposed as treatment options for RA; however due to low cellular penetration and a high degree of instability, clinical applications of these therapeutics have been limited.
View Article and Find Full Text PDFJ Biomed Mater Res A
May 2015
Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244; Department of Biomedical and Chemical Engineering, Syracuse University, 121 Link Hall, Syracuse, New York, 13244.
Activation of the transcription factor nuclear factor-kappa B (NF-κB) signaling pathway is associated with enhanced secretion of pro-inflammatory mediators and is thought to play a critical role in diseases hallmarked by inflammation, including cystic fibrosis (CF). Small nucleic acids that interfere with gene expression have been proposed as promising therapeutics for a number of diseases. However, applications have been limited by low cellular penetration and a lack of stability.
View Article and Find Full Text PDFPharm Res
September 2014
Syracuse Biomaterials Institute Department of Biomedical and Chemical Engineering, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA.
Purpose: To evaluate the therapeutic efficacy of dexamethasone (DM) and methotrexate (MTX) entrapped within polysialic acid (PSA)-trimethyl chitosan (TMC) nanoparticles using an in vitro model of rheumatoid arthritis (RA).
Methods: The loading capacity of the PSA-TMC nanoparticles was determined. An RA in vitro model was developed by stimulating a synovial cell line with a proinflammatory mediator.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!