Regulatory T cells (Tregs) are an essential component of the immune system, but are also involved in the suppression of anti-tumour immune responses. The study examines their immunoregulatory role including their transcription factor, FOXP3, in oral and cutaneous SCC. Tregs were detected by double-immunohistochemistry. FOXP3-mRNA-expression was examined in tumour tissue, as well as in skin-derived primary cells and cell lines of different malignancy. Tregs were found in the tumour microenvironment, and FOXP3-mRNA-expression was significantly higher than in normal skin. Intriguingly, single FOXP3(+) cells exhibited morphologic characteristics of SCC cells. Consistent with this, endogenous FOXP3-mRNA-expression was indeed detected in the epidermal cell lineage and dramatically increased with increasing malignancy of the cells. SCCs recruit Tregs into their microenvironment, presumably in order to suppress immunosurveillance, thus avoiding destruction by the immune system. Endogenous FOXP3-expression in malignant epidermoid cells might present a novel mechanism of immune escape.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcms.2014.06.022DOI Listing

Publication Analysis

Top Keywords

regulatory cells
8
immune system
8
cells
7
cutaneous oral
4
oral squamous
4
squamous cell
4
cell carcinoma-dual
4
carcinoma-dual immunosuppression
4
immunosuppression recruitment
4
recruitment foxp3+
4

Similar Publications

miR-542-3p/PIK3R1 axis is involved in hsa_circ_0087104-mediated inhibition of esophageal squamous cell carcinoma metastasis.

Am J Cancer Res

December 2024

Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, Zhejiang, China.

Esophageal squamous cell carcinoma (ESCC), the most predominant subtype of esophageal cancer, is notorious for its high lymph node metastatic potential and poor prognosis. Growing evidence has demonstrated crucial function of circRNAs in human malignancies. However, the knowledge of circRNAs in lymph node metastasis of ESCC is still inadequate.

View Article and Find Full Text PDF

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Unlabelled: -methyladenosine (m A) is the most prevalent cellular mRNA modification and plays a critical role in regulating RNA stability, localization, and gene expression. m A modification plays a vital role in modulating the expression of viral and cellular genes during HIV-1 infection. HIV-1 infection increases cellular RNA m A levels in many cell types, which facilitates HIV-1 replication and infectivity in target cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!