A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Downregulation of cystathionine β-synthase/hydrogen sulfide contributes to rotenone-induced microglia polarization toward M1 type. | LitMetric

Downregulation of cystathionine β-synthase/hydrogen sulfide contributes to rotenone-induced microglia polarization toward M1 type.

Biochem Biophys Res Commun

Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021, China; Department of Pharmacology, School of Pharmaceutical Science, Soochow University, Suzhou 215123, China. Electronic address:

Published: August 2014

AI Article Synopsis

  • Microglia, the brain's immune cells, play a crucial role in neuroinflammation linked to neurodegenerative diseases and can switch between pro-inflammatory (M1) and anti-inflammatory (M2) states depending on stimuli.
  • The environmental toxin rotenone was found to increase M1 markers (like TNF-α and iNOS) while decreasing M2 markers (like IL-10) in mouse microglia, suggesting it skews their function to a pro-inflammatory response.
  • Elevating hydrogen sulfide (H2S) levels through over-expression of cystathionine-β-synthase (CBS) or using H2S donors mitigated the M1 marker expression and promoted M2 markers, indicating

Article Abstract

Microglia-mediated neuroinflammation is implicated in the pathogenesis of several neurodegenerative disorders. Microglia can be activated and polarized to exert pro- or anti-inflammatory roles in response to specific stimulus. Rotenone is an environmental toxin that has been shown to activate microglia and neuroinflammation. However, the effects and mechanisms of rotenone on microglia polarization are poorly studied. In the present study, we demonstrated that rotenone enhanced the levels of M1 phenotypic genes including TNF-α, iNOS and COX-2/PGE2 but reduced that of M2 markers such as Ym1/2 and IL-10 in mouse primary and immortalized microglia. Moreover, the transcription and protein expression of cystathionine-β-synthase (CBS), as well as hydrogen sulfide (H2S) production were decreased in rotenone-treated primary microglia. Elevating endogenous H2S via CBS over-expression in immortalized microglia not only reduced the expression of pro-inflammatory M1 genes, but also enhanced the anti-inflammatory M2 marker IL-10 production in response to rotenone stimulation as compared to vector-transfected cells. Similarly, pretreatment with H2S donor NaHS (50, 100 and 500μmol/L) attenuated the increases of M1 gene expression triggered by rotenone treatment, and enhanced the M2 gene Ym1/2 expression in mouse primary microglia. In addition, we observed reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine reversed the down-regulation of CBS and H2S generation caused by rotenone in microglia. NaHS pretreatment also decreased the ROS formation in rotenone-stimulated microglia. Taken together, these results reveal that probably via triggering ROS formation, rotenone suppressed the CBS-H2S pathway and thus promoted microglia polarization toward M1 pro-inflammatory phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.07.107DOI Listing

Publication Analysis

Top Keywords

microglia polarization
12
microglia
11
rotenone microglia
8
mouse primary
8
immortalized microglia
8
primary microglia
8
ros formation
8
rotenone
7
downregulation cystathionine
4
cystathionine β-synthase/hydrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!