Measuring Ca2+ pump activity in overexpression systems and cardiac muscle preparations.

Cold Spring Harb Protoc

Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, B3000 Leuven, Belgium.

Published: August 2014

Sarco-/endoplasmic reticulum (SR/ER) Ca(2+) pumps (SERCAs) build up vital Ca(2+) gradients across the intracellular SR/ER membrane, helping to control cell function, proliferation, growth, differentiation, and death. We describe two techniques to measure the SERCA activity either in mammalian culture cells overexpressing SERCAs or in muscle tissue containing high levels of endogenous SERCAs. As Ca(2+) transport is tightly coupled to ATP hydrolysis, it is possible to determine the rate of Ca(2+)-dependent ATP hydrolysis and use it as a measure for SERCA activity or, in a second approach, to quantify ATP-stimulated uptake of radioactive (45)Ca(2+). Here, we first provide an overview of the mechanism of Ca(2+)-transport ATPases and show how this can be taken advantage of in protocols for measuring Ca(2+) pump activity.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.top066134DOI Listing

Publication Analysis

Top Keywords

measuring ca2+
8
ca2+ pump
8
pump activity
8
measure serca
8
serca activity
8
atp hydrolysis
8
activity
4
activity overexpression
4
overexpression systems
4
systems cardiac
4

Similar Publications

Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast.

Neurosci Lett

December 2024

School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:

Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

Cardiac sex-difference functional studies have centred on measurements of twitch force and Ca dynamics. The energy expenditures from these two cellular processes: activation (Ca handling) and contraction (cross-bridge cycling), have not been assessed, and compared, between sexes. Whole-heart studies measuring oxygen consumption do not directly measure the energy expenditure of these activation-contraction processes.

View Article and Find Full Text PDF

Objectives: Dental bone formation involves various cellular and molecular mechanisms, and phytoestrogens such as formononetin (FORM) are promising because of their estrogenic, anti-inflammatory, and antioxidant effects. This study investigated the effect of FORM on osteoblast proliferation, differentiation, and mineralization in combination with spongiosa granulates (BO) in vitro.

Materials And Methods: Human fetal osteoblast cells (hFOB1.

View Article and Find Full Text PDF

A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat.

Biosensors (Basel)

December 2024

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.

The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!