CXCR7 Receptor Controls the Maintenance of Subpial Positioning of Cajal-Retzius Cells.

Cereb Cortex

Université Montpellier 2, Montpellier F-34095, France INSERM U710, University Montpellier 2, Montpellier F-34095, France EPHE, Paris F-75007, France.

Published: October 2015

Cajal-Retzius (CR) cells are essential for cortical development and lamination. These pioneer neurons arise from distinct progenitor sources, including the cortical hem and the ventral pallium at pallium-subpallium boundary (PSB). CXCR4, the canonical receptor for the chemokine CXCL12, controls the superficial location of hem-derived CR cells. However, recent studies showed that CXCR7, a second CXCL12 receptor, is also expressed in CR cells at early developmental stages. We thus investigated the role of CXCR7 during CR cell development using multiple loss-of-function approaches. Cxcr7 gene inactivation led to aberrant localization of Reelin-positive cells within the pallium. In addition, Cxcr7(-/-) mice were characterized by significant accumulation of ectopic CR cells in the lateral part of the dorsal pallium compared with Cxcr4 knockout mice. Loss-of-function approaches, using either gene targeting or pharmacological receptor inhibition, reveal that CXCR7 and CXCR4 act both in CR positioning. Finally, conditional Cxcr7 deletion in cells derived from Dbx1-expressing progenitors indicates an essential role of CXCR7 in controlling the positioning of a subpopulation of PSB-derived CR cells. Our data demonstrate that CXCR7 has a role in the positioning of hem and PSB-derived CR cells, CXCL12 regulating CR cell subpial localization through the combined action of CXCR4 and CXCR7.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhu164DOI Listing

Publication Analysis

Top Keywords

cxcr7
9
cells
9
cajal-retzius cells
8
role cxcr7
8
loss-of-function approaches
8
psb-derived cells
8
cxcr7 receptor
4
receptor controls
4
controls maintenance
4
maintenance subpial
4

Similar Publications

Rationale: Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown.

View Article and Find Full Text PDF

Saturated fatty acid (SFA) accumulation in liver decreases hepatocyte lipophagy, a type of selective autophagy that degrades intracellular lipid droplets, leading to hepatic insulin resistance (IR), which contributes to simultaneous increases in liver glucose production and fat synthesis, resulting in hyperglycemia and dyslipidemia traits of type 2 diabetes mellitus (T2DM). Stromal cell derived factor-1 (SDF-1), a cytokine produced by hepatocytes, inhibits autophagy. In this study, we evaluated the hypothesis that SDF-1 promoted hepatic IR via inhibiting hepatocyte lipophagy during T2DM.

View Article and Find Full Text PDF

The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases.

Brain Behav Immun Health

February 2025

Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.

View Article and Find Full Text PDF

The causative effect of CXCR7 on experimental autoimmune prostatitis injury and fibrosis.

Int Immunopharmacol

January 2025

Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China. Electronic address:

Chronic prostatitis and Pelvic Pain syndrome (CP/CPPS) is an autoimmune inflammatory disease characterized by pelvic or perineal pain and infiltration of inflammatory cells in the prostate. C-X-C chemokine receptor type 7 (CXCR7) is an atypical chemokine receptor that has been shown to play a key role in inflammatory processes in prostate cancer. However, the role of CXCR7 in autoimmune prostate and immune regulation in CP/CPPS along with the mechanism of action for CXCR7 remains unclear.

View Article and Find Full Text PDF

Introduction: Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!