AI Article Synopsis

  • The study investigates char burnout characteristics of two types of German coals (lignite and high-volatile bituminous) using different experimental setups in separate labs.
  • Both systems utilized optical techniques, such as two-color pyrometry and individual particle sizing, to analyze char consumption kinetics in high-temperature conditions.
  • Results indicate that while both setups provide comparable data, variability is notably greater in the imaging-based system, particularly at lower oxygen levels, suggesting that higher O2 concentrations (10%-30%) are more reliable for measuring char burning rates.

Article Abstract

In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4890438DOI Listing

Publication Analysis

Top Keywords

kinetics parameters
8
char burning
8
determination char
4
char combustion
4
kinetics
4
combustion kinetics
4
parameters comparison
4
comparison point
4
point detector
4
detector imaging-based
4

Similar Publications

Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

View Article and Find Full Text PDF

Duchenne gait, characterized by an ipsilateral trunk lean towards the affected stance limb, compensates for weak hip abductor muscles, notably the gluteus medius (GM). This study aims to investigate how electromyographic (EMG) cluster analysis of GM contributes to a better understanding of Duchenne gait in patients with cerebral palsy (CP). We analyzed retrospective gait data from 845 patients with CP and 65 typically developed individuals.

View Article and Find Full Text PDF

Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.

View Article and Find Full Text PDF

Neuroplasticity in Diffuse Low-grade Gliomas: Backward Modelling of Brain-tumor Interactions Prior to Diagnosis is Needed to Better Predict Recovery after Treatment.

Curr Neurol Neurosci Rep

January 2025

Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.

Purpose Of Review: In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis.

View Article and Find Full Text PDF

Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!