Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO2 gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4890997DOI Listing

Publication Analysis

Top Keywords

sulfur dimers
12
sulfur
8
density functional
8
sulfur atoms
8
experimental stm
8
dimers adsorbed
4
adsorbed au111
4
au111 building
4
building blocks
4
blocks sulfur
4

Similar Publications

The mechanism of autoreduction in Dehaloperoxidase-A.

Biochem Biophys Res Commun

December 2024

Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. Electronic address:

Hemoglobin and myoglobin are known to undergo autoxidation, in which the oxyferrous form of the heme is oxidized to the ferric state by O. Dehaloperoxidase-A (DHP-A), a multifunctional catalytic hemoglobin from Amphitrite ornata is an exception and is observed to undergo the reverse process, during which the ferric heme is spontaneously reduced to the oxyferrous form under aerobic conditions. The high reduction potential of DHP (+202 mV at pH 7.

View Article and Find Full Text PDF

Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.

View Article and Find Full Text PDF

The visible-light-mediated continuous dehydration condensation and oxidative radical dimerization, featuring sulfur hexafluoride (SF) as both a condensation agent and oxidant, have been developed. This photocatalytic method uses commercially available N-protected amino acids as substrates and enables the formation of azlactone monomers and dimers, facilitating efficient utilization and degradation of greenhouse gas SF.

View Article and Find Full Text PDF

The structural and functional analysis of mycobacteria cysteine desulfurase-loaded encapsulin.

Commun Biol

December 2024

College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.

Encapsulin nanocompartments loaded with dedicated cargo proteins via unique targeting peptides, play a key role in stress resistance, iron storage and natural product biosynthesis. Mmp1 and cysteine desulfurase (Enc-CD) have been identified as the most abundant representatives of family 2 encapsulin systems. However, the molecular assembly, catalytic mechanism, and physiological functions of the Mmp1 encapsulin system have not been studied in detail.

View Article and Find Full Text PDF

Lignin represents a significant source of aromatic hydrocarbons in the natural world. The production of high-value chemicals from lignin has the great potential to effectively address the issue of fossil energy scarcity. In this study, complex sulfides of nickel‑cobalt bimetallic catalysts were prepared via hydrothermal synthesis and subsequently employed in the catalytic hydrogenolysis of CO bonds present in lignin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!