Increasing spin-flips and decreasing cost: Perturbative corrections for external singles to the complete active space spin flip model for low-lying excited states and strong correlation.

J Chem Phys

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA and Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA.

Published: July 2014

An approximation to the spin-flip extended configuration interaction singles method is developed using a second-order perturbation theory approach. In addition to providing significant efficiency advantages, the new framework is general for an arbitrary number of spin-flips, with the current implementation being applicable for up to around 4 spin-flips. Two new methods are introduced: one which is developed using non-degenerate perturbation theory, spin-flip complete active-space (SF-CAS(S)), and a second quasidegenerate perturbation theory method, SF-CAS(S)1. These two approaches take the SF-CAS wavefunction as the reference, and then perturbatively includes the effect of single excitations. For the quasidegenerate perturbation theory method, SF-CAS(S)1, the subscripted "1" in the acronym indicates that a truncated denominator expansion is used to obtain an energy-independent down-folded Hamiltonian. We also show how this can alternatively be formulated in terms of an extended Lagrangian, by introducing an orthonormality constraint on the first-order wavefunction. Several numerical examples are provided, which demonstrate the ability of SF-CAS(S) and SF-CAS(S)1 to describe bond dissociations, singlet-triplet gaps of organic molecules, and exchange coupling parameters for binuclear transition metal complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4889918DOI Listing

Publication Analysis

Top Keywords

perturbation theory
16
quasidegenerate perturbation
8
theory method
8
method sf-cass1
8
increasing spin-flips
4
spin-flips decreasing
4
decreasing cost
4
cost perturbative
4
perturbative corrections
4
corrections external
4

Similar Publications

Aiming at the control challenges faced by unmanned surface vessels (USVs) in complex environments, such as nonlinearities, parameter uncertainties, and environmental perturbations, we propose a non-singular terminal integral sliding mode control strategy based on an extended state observer (ESO). The strategy first employs a third-order linear extended state observer to estimate the total disturbances of the USV system, encompassing both external disturbances and internal nonlinearities. Subsequently, a backstepping sliding mode controller based on the Lyapunov theory is designed to generate the steering torque control commands for the USV.

View Article and Find Full Text PDF

Vistla: identifying influence paths with information theory.

Bioinformatics

January 2025

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, 02-106, Poland.

Motivation: It is a challenging task to decipher the mechanisms of a complex system from observational data; especially in biology, where systems are sophisticated, measurements coarse and multi-modality is a common trait. The typical approaches of inferring a network of relationships between system's components struggle with the quality and feasibility of estimation, as well as with the interpretability of the results they yield.Said issues can be avoided, however, when dealing with a simpler problem of tracking only the influence paths, defined as circuits relying the information of an experimental perturbation as it spreads through the system.

View Article and Find Full Text PDF

Determining the energetics of triplet electronic states of nucleobases in the biological macromolecular environment of nucleic acids is essential for an accurate description of the mechanism of photosensitization and the design of drugs for cancer treatment. In this work, we aim at developing a methodological approach to obtain accurate free energies of triplets in DNA beyond the state of the art, able to reproduce the decrease of triplet energies measured experimentally for in DNA (270 kJ/mol) vs in the isolated nucleotide in aqueous solution (310 kJ/mol). For such purposes, we adapt the free energy perturbation method to compute the free energy related to the transformation of a pure singlet state into a pure triplet state via "alchemical" intermediates with mixed singlet-triplet nature.

View Article and Find Full Text PDF

Two-dimensional (2D) ferromagnetic (FM) semiconductors hold great promise for the next generation spintronics devices. By performing density functional theory first-principles calculations, both CeF and CeFCl monolayers are studied, our calculation results show that CeF is a FM semiconductor with sizable magneto-crystalline anisotropy energy (MAE) and high Curie temperature (290 K), but a smaller band gap and thermal instability indicate that it is not applicable at higher temperature. Its isoelectronic analogue, the CeFCl monolayer, is a bipolar FM semiconductor, its dynamics, elastic, and thermal stability are confirmed, our results demonstrate promising applications of the CeFCl monolayer for next-generation spintronic devices owing to its high Curie temperature (200 K), stable semiconducting features, and stability.

View Article and Find Full Text PDF

Circumventing the Metastable States within DFT+ through Random Orbital-Dependent Local Perturbation.

J Chem Theory Comput

January 2025

Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621907, China.

Hubbard-corrected density-functional theory (DFT+) is widely employed to predict the physical properties of correlated materials; however, reliable predictions can be hindered by the presence of metastable solutions in the DFT+ calculations. This issue stems from the orbital physics inherent in DFT+. To address this, we propose a method to circumvent metastable states by applying a random orbital-dependent local perturbation to the localized orbitals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!