Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reaction of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with acenaphthylene and indene leads not only to the formation of the expected [2 + 2] diazetidine cycloadducts but also to unexpected 2:1 adducts of MeTAD with substrate. The structures of the products derived from acenaphthylene were confirmed by X-ray crystallography. A similar distribution of products was afforded from indene. The 2:1 adducts appear to derive from a diradical intermediate, the radical centers of which are strongly stabilized by the bridging urazoyl ring and benzylic delocalization. The triplet states of these diradical intermediates may be trapped via exposure to molecular oxygen to afford oxygen-containing adducts. Computational studies at the (U)B3LYP/6-31G* level provide additional support for the conclusions of our experimental work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo5014096 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!