Elevated plasma triglyceride (TG) concentrations are associated with an increased risk of atherosclerotic cardiovascular disease (CVD), hepatic steatosis and pancreatitis. Existing pharmacotherapies, such as fibrates, n-3 polyunsaturated fatty acids (PUFAs) and niacin, are partially efficacious in correcting elevated plasma TG. However, several new TG-lowering agents are in development that can regulate the transport of triglyceride-rich lipoproteins (TRLs) by modulating key enzymes, receptors or ligands involved in their metabolism. Balanced dual peroxisome proliferator-activated receptor (PPAR) α/γ agonists, inhibitors of microsomal triglyceride transfer protein (MTTP) and acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1), incretin mimetics, and apolipoprotein (apo) B-targeted antisense oligonucleotides (ASOs) can all decrease the production and secretion of TRLs; inhibitors of cholesteryl ester transfer protein (CETP) and angiopoietin-like proteins (ANGPTLs) 3 and 4, monoclonal antibodies (Mabs) against proprotein convertase subtilisin/kexin type 9 (PCSK9), apoC-III-targeted ASOs, selective peroxisome proliferator-activated receptor modulators (SPPARMs), and lipoprotein lipase (LPL) gene replacement therapy (alipogene tiparvovec) enhance the catabolism and clearance of TRLs; dual PPAR-α/δ agonists and n-3 polyunsaturated fatty acids can lower plasma TG by regulating both TRL secretion and catabolism. Varying degrees of TG reduction have been reported with the use of these therapies, and for some agents such as CETP inhibitors and PCSK9 Mabs findings have not been consistent. Whether they reduce CVD events has not been established. Trials investigating the effect of CETP inhibitors (anacetrapib and evacetrapib) and PCSK9 Mabs (AMG-145 and REGN727/SAR236553) on CVD outcomes are currently in progress, although these agents also regulate LDL metabolism and, in the case of CETP inhibitors, HDL metabolism. Further to CVD risk reduction, these new treatments might also have a potential role in the management of diabetes and non-alcoholic fatty liver disease owing to their insulin-sensitizing action (PPAR-α/γ agonists) and potential capacity to decrease hepatic TG accumulation (PPAR-α/δ agonists and DGAT-1 inhibitors), but this needs to be tested in future trials. We summarize the clinical trial findings regarding the efficacy and safety of these novel therapies for hypertriglyceridemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plipres.2014.07.002 | DOI Listing |
Expert Opin Pharmacother
December 2024
Department of Metabolic Medicine/Chemical Pathology Guy's, St Thomas' Hospitals, London, UK.
Introduction: Lipid-lowering therapies are well established for the treatment of cardiovascular disease (CVD). Historically monotherapy studies have been performed, but the introduction of statins has led to these drugs being recognized as baseline therapies and to the investigation of combination therapy of both older and newer medications with them.
Areas Covered: Surrogate marker studies have shown additive effects on LDL-C, triglycerides and HDL-C of combination therapies with statins and these have extended to lipoprotein (a).
Brain
December 2024
Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
Immunotargets Ther
November 2024
Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
Background: Dyslipidemia has been implicated in the pathogenesis of several diseases, including thyroid dysfunction and immune disorders. However, whether circulating lipids and long-term use of lipid-lowering drugs influence the development of autoimmune thyroid disease (AITD) remains unclear. This study aims to evaluate the effects of lipid-lowering drugs on AITD and explore their potential mechanisms.
View Article and Find Full Text PDFCurr Opin Lipidol
December 2024
NewAmsterdam Pharma B.V., Naarden, The Netherlands.
Purpose Of Review: To review the evidence and describe the biological plausibility for the benefits of inhibiting cholesteryl ester transfer protein (CETP) on multiple organ systems through modification of lipoprotein metabolism.
Recent Findings: Results from observational studies, Mendelian randomization analyses, and randomized clinical trials support the potential of CETP inhibition to reduce atherosclerotic cardiovascular disease (ASCVD) risk through a reduction of apolipoprotein B-containing lipoproteins. In contrast, raising high-density lipoprotein (HDL) particles, as previously hypothesized, did not contribute to ASCVD risk reduction.
Pharmacol Res Perspect
December 2024
NewAmsterdam Pharma B.V, Naarden, The Netherlands.
Anacetrapib, a cholesteryl ester transfer protein (CETP) inhibitor previously under development, exhibited an usually extended terminal half-life and large food effect and accumulated in adipose tissue. Other CETP inhibitors have not shown such effects. Obicetrapib, a potent selective CETP inhibitor, is undergoing Phase III clinical development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!