A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein redesign by learning from data. | LitMetric

Protein redesign by learning from data.

Protein Eng Des Sel

Delft Bioinformatics Lab, Department of Intelligent Systems, Faculty Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628CD, Delft, The Netherlands Netherlands Bioinformatics Centre, Nijmegen, The Netherlands Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands

Published: September 2014

Protein redesign methods aim to improve a desired property by carefully selecting mutations in relevant regions guided by protein structure. However, often protein structural requirements underlying biological characteristics are not well understood. Here, we introduce a methodology that learns relevant mutations from a set of proteins that have the desired property and demonstrate it by successfully improving production levels of two enzymes by Aspergillus niger, a relevant host organism for industrial enzyme production. We validated our method on two enzymes, an esterase and an inulinase, creating four redesigns with 5-45 mutations. Up to 10-fold increase in production was obtained with preserved enzyme activity for small numbers of mutations, whereas production levels and activities dropped for too aggressive redesigns. Our results demonstrate the feasibility of protein redesign by learning. Such an approach has great potential for improving production levels of many industrial enzymes and could potentially be employed for other design goals.

Download full-text PDF

Source
http://dx.doi.org/10.1093/protein/gzu031DOI Listing

Publication Analysis

Top Keywords

protein redesign
12
production levels
12
redesign learning
8
desired property
8
improving production
8
protein
5
production
5
learning data
4
data protein
4
redesign methods
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!