Background: Human-induced pluripotent stem cells (iPSCs) are a potentially unlimited source for generation of cardiomyocytes (iPSC-CMs). However, current protocols for iPSC-CM derivation face several challenges, including variability in somatic cell sources and inconsistencies in cardiac differentiation efficiency.
Objectives: This study aimed to assess the effect of epigenetic memory on differentiation and function of iPSC-CMs generated from somatic cell sources of cardiac versus noncardiac origins.
Methods: Cardiac progenitor cells (CPCs) and skin fibroblasts from the same donors were reprogrammed into iPSCs and differentiated into iPSC-CMs via embryoid body and monolayer-based differentiation protocols.
Results: Differentiation efficiency was found to be higher in CPC-derived iPSC-CMs (CPC-iPSC-CMs) than in fibroblast-derived iPSC-CMs (Fib-iPSC-CMs). Gene expression analysis during cardiac differentiation demonstrated up-regulation of cardiac transcription factors in CPC-iPSC-CMs, including NKX2-5, MESP1, ISL1, HAND2, MYOCD, MEF2C, and GATA4. Epigenetic assessment revealed higher methylation in the promoter region of NKX2-5 in Fib-iPSC-CMs compared with CPC-iPSC-CMs. Epigenetic differences were found to dissipate with increased cell passaging, and a battery of in vitro assays revealed no significant differences in their morphological and electrophysiological properties at early passage. Finally, cell delivery into a small animal myocardial infarction model indicated that CPC-iPSC-CMs and Fib-iPSC-CMs possess comparable therapeutic capabilities in improving functional recovery in vivo.
Conclusions: This is the first study to compare differentiation of iPSC-CMs from human CPCs versus human fibroblasts from the same donors. The authors demonstrate that although epigenetic memory improves differentiation efficiency of cardiac versus noncardiac somatic cell sources in vitro, it does not contribute to improved functional outcome in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134946 | PMC |
http://dx.doi.org/10.1016/j.jacc.2014.04.056 | DOI Listing |
Zool Res
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.
Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.
View Article and Find Full Text PDFBr J Cancer
January 2025
University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.
Background: Emerging evidence suggests that non-coding somatic single nucleotide variants (SNVs) in cis-regulatory elements (CREs) contribute to cancer by disrupting gene expression networks. However, the role of non-coding SNVs in cancer, particularly neuroblastoma, remains largely unclear.
Methods: SNVs effect on CREs activity was evaluated by luciferase assays.
Anim Sci J
January 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
The aim of this study was to investigate changes in milk conditions and antimicrobial components in goats during 8 weeks prepartum and 1 week postpartum. Milk was collected weekly from seven prepartum goats 8 weeks before the due day, immediately, and 1 week after parturition. Milk color scores and the concentration of antimicrobial components (cathelicidin-7 and S100A8) were significantly increased prepartum.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2025
Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA. Electronic address:
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss of functional variants in BAP1 is associated with a tumor predisposition syndrome with at least four cancers; uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFCell Genom
January 2025
Early Cancer Institute, University of Cambridge, Cambridge, UK. Electronic address:
The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!