[A new role of GABA on synapses].

Brain Nerve

Structural Physiology, Graduate School of Medicine, The University of Tokyo.

Published: August 2014

Neurons connect and transmit information via synapses. The major excitatory and inhibitory (E-I) neurotransmitters are glutamate and γ-amino butyric acid (GABA), respectively. The E-I balance plays an important role in various brain functions. In this review, we summarize the role of GABA on synaptic integration and synaptic plasticity by introducing our own recent findings. In synaptic integration, GABA is considered to inhibit depolarization induced by glutamate and suppress action potentials. We found that GABA also has a more direct role on the synaptic plasticity of excitatory inputs. GABA effectively promotes the shrinkage and elimination of synapses by suppressing local dendritic Ca(2+) signaling, while keeping the Ca(2+) domain of the NMDA receptors intact. In this manner, GABA promoted the activation of calcineurin, which in turn activated cofilin. Interestingly, shrinkage tended to spread, likely due to the spread of cofilin, and induced competitive selection of synapses via its phosphorylation and dephosphorylation. The selection of synapses is key to the reorganization of the central nervous system during development and in adulthood, and GABA plays key roles in various mental disorders, such as autism and schizophrenia. Our results account well for the in vivo GABA functions on synaptic selection, and may help to develop new therapeutic compounds.

Download full-text PDF

Source

Publication Analysis

Top Keywords

role gaba
8
gaba
8
synaptic integration
8
synaptic plasticity
8
selection synapses
8
synaptic
5
role
4
gaba synapses]
4
synapses] neurons
4
neurons connect
4

Similar Publications

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

Stress and telomere length in leukocytes: Investigating the role of GABRA6 gene polymorphism and cortisol.

Psychoneuroendocrinology

January 2025

Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium. Electronic address:

Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype.

View Article and Find Full Text PDF

Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways.

Int J Mol Sci

January 2025

Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Chronic pain is a multidimensional experience that not only involves persistent nociception but is also frequently accompanied by significant emotional disorders, such as anxiety and depression, which complicate its management and amplify its impact. This review provides an in-depth exploration of the neurobiological mechanisms underlying the comorbidity of chronic pain and emotional disturbances. Key areas of focus include the dysregulation of major neurotransmitter systems (serotonin, gamma-aminobutyric acid, and glutamate) and the resulting functional remodeling of critical neural circuits implicated in pain processing, emotional regulation, and reward.

View Article and Find Full Text PDF

Cocaine use disorder remains a major global health concern, with growing evidence that the gut microbiome modulates drug-related behaviors. This study examines the microbiome's role in cocaine-induced psychomotor activation and context-dependent reward responses using germ-free (GF) and antibiotic-treated (ABX) models. In GF mice, the absence of a microbiome blunted cocaine-induced psychomotor activation ( = 0.

View Article and Find Full Text PDF

is a foodborne pathogen characterized by its robust stress tolerance and ability to form biofilms, which facilitates its survival in powdered infant formula (PIF) processing environments for prolonged periods. Gamma-aminobutyric acid (GABA) is a kind of non-protein amino acid that acts as an osmoprotectant. This study aimed to elucidate the effects of the gene on the survival of , GABA accumulation, and biofilm formation under desiccation, osmotic stress, and acid exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!