Control of protein synthesis is critical to both cell growth and proliferation. The mammalian target of rapamycin (mTOR) integrates upstream growth, proliferation, and survival signals, including those transmitted via ERK1/2 and Akt, to regulate the rate of protein translation. The angiotensin AT1 receptor has been shown to activate both ERK1/2 and Akt in arrestin-based signalsomes. Here, we examine the role of arrestin-dependent regulation of ERK1/2 and Akt in the stimulation of mTOR-dependent protein translation by the AT1 receptor using HEK293 and primary vascular smooth muscle cell models. Nascent protein synthesis stimulated by both the canonical AT1 receptor agonist angiotensin II (AngII), and the arrestin pathway-selective agonist [Sar(1)-Ile(4)-Ile(8)]AngII (SII), is blocked by shRNA silencing of βarrestin1/2 or pharmacological inhibition of Akt, ERK1/2, or mTORC1. In HEK293 cells, SII activates a discrete arrestin-bound pool of Akt and promotes Akt-dependent phosphorylation of mTOR and its downstream effector p70/p85 ribosomal S6 kinase (p70/85S6K). In parallel, SII-activated ERK1/2 helps promote mTOR and p70/85S6K phosphorylation, and is required for phosphorylation of the known ERK1/2 substrate p90 ribosomal S6 kinase (p90RSK). Thus, arrestins coordinate AT1 receptor regulation of ERK1/2 and Akt activity and stimulate protein translation via both Akt-mTOR-p70/85S6K and ERK1/2-p90RSK pathways. These results suggest that in vivo, arrestin pathway-selective AT1 receptor agonists may promote cell growth or hypertrophy through arrestin-mediated mechanisms despite their antagonism of G protein signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176252 | PMC |
http://dx.doi.org/10.1074/jbc.M114.595728 | DOI Listing |
Biomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFDiscov Med
January 2025
Department of Pharmacology "Otto Orsingher", Institute of Experimental Pharmacology of Córdoba (IFEC-CONICET), Faculty of Chemical Sciences, National University of Córdoba, X5000 Córdoba, Argentina.
Background: Angiotensin II, is critical in regulating the sympathetic and neuroendocrine systems through angiotensin II type 1 receptors (AT-R). Angiotensin II intracerebral administration increases water and sodium intake, as well as renal sodium excretion. Previously, our group has shown that AT-R is involved in behavioral and neurochemical sensitization induced by amphetamine.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina.
Background: The cerebral Renin-Angiotensin System might have a role in anxiety and depression development.
Objective: We explored the effects of Angiotensin II Type 1 receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) on anxiety and depression in Parkinson's Disease (PD).
Methods: Four hundred and twenty-three newly diagnosed drug-naïve PD patients were evaluated using the State-Trait Anxiety Inventory (STAI) and Geriatric Depression Scale (GDS-15) tests and were monitored at baseline and for up to 3 years.
Sci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Molecular Medicine, Cardiovascular and Renal Research Unit, University of Southern Denmark, Odense M, Denmark.
The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT receptor (ATR), and in contrast the protective axis, which includes the receptors Mas, ATR and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!