Glaucoma is a chronic disease that causes structural and functional damage to retinal ganglion cells (RGC). The currently employed therapeutic options are not sufficient to prevent vision loss in patients with glaucoma; therefore, there is a need to develop novel therapies, which requires the creation of functional, repeatable and easy-to-utilize animal models for use in pre-clinical studies. The currently available models ensure only low to moderate damage in optic nerves, with high variation in the outcomes and poor repeatability. We have developed an effective and reproducible rat glaucoma model based on a previous idea for a "Bead Model" in mice, which could be useful in future glaucoma research. Additionally, in an attempt to achieve rapid elevation of Intraocular Pressure (IOP), we included an initial "high-pressure injury" as part of this method, which serves as the equivalent of a severe glaucoma attack. These modifications made it possible to achieve longer lasting IOP elevation with chronic damage of retinal ganglion cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118189PMC
http://dx.doi.org/10.1038/srep05910DOI Listing

Publication Analysis

Top Keywords

elevation intraocular
8
intraocular pressure
8
damage retinal
8
retinal ganglion
8
ganglion cells
8
glaucoma
6
rat experimental
4
experimental model
4
model glaucoma
4
glaucoma incorporating
4

Similar Publications

Purpose: Idiopathic elevated episcleral venous pressure (IEEVP) or Radius-Maumenee syndrome (RMS) is a rare disease without any identified underlying cause. An increasing episcleral venous pressure (EVP) leads to raised intraocular pressure (IOP) and consequently glaucomatous damage of the optic nerve. The objective of this paper is to report this rare condition as well as its clinical management.

View Article and Find Full Text PDF

Rapamycin protects glucocorticoid-induced glaucoma model mice against trabecular meshwork fibrosis by suppressing mTORC1/2 signaling.

Eur J Pharmacol

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China. Electronic address:

Systemic or local use of glucocorticoids (GCs) can induce pathological elevation of intraocular pressure (IOP), potentially leading to permanent visual loss. Previous studies have demonstrated that rapamycin (Rapa) inhibits the activation of retinal glial cells and the production of neuroinflammation, achieving neuroprotective goals. However, there has been little research on the effect of Rapa on the trabecular meshwork (TM).

View Article and Find Full Text PDF

Animal models that help us understand how elevated intraocular pressure (IOP) causes axonal injury will lead to new glaucoma therapies. Because reliable measurements are difficult to obtain in chronic models, we developed the controlled elevation of IOP (CEI) approach. Here, a cannula connected to an elevated balanced salt solution (BSS) reservoir is inserted into the anterior chamber of anesthetized Brown Norway rats.

View Article and Find Full Text PDF

Purpose: Scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin has already been used in laboratory studies for scleral stiffness increase as a potential treatment for progressive myopia and scleral ectasia. This study aims to investigate whether the regional application of scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin in fresh porcine eye globes affects the ocular rigidity as well as its impact on intraocular pressure after an induced acute increase in the volume of intraocular fluid.

Methods: The study included two groups of fresh porcine eyes: an experimental group (n=20) that underwent scleral cross-linking (SXL) with riboflavin and UVA applied to the posterior sclera and a control group (n=20) that did not receive SXL treatment.

View Article and Find Full Text PDF

[Bilateral conspicuous iris configuration and elevation of intraocular pressure of unclear origin].

Ophthalmologie

January 2025

Klinik für Augenheilkunde, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!