Hen egg white lysozyme (HEWL) is widely used in the mechanistic study of amyloid fibril formation. Yet, the fibrillation mechanism of HEWL is not well understood. In particular, in situ structural evidence for the on-pathway oligomeric intermediate has never been captured. Such evidence is crucial for confirming nucleated conformational conversion mechanism. Herein, we attempt to use a two-step temperature-dependent Fourier transform infrared (FTIR) approach to capture the in situ evidence for the on-pathway oligomeric intermediate and the oligomer-to-fibril transition during HEWL fibrillation. Key features of this approach include using lower temperature to generate the on-pathway oligomeric intermediate, using elevated temperature to eliminate the interference from the off-pathway oligomer and to facilitate the oligomer-to-fibril transition, and using FTIR difference spectroscopy and atomic force microscopy to tackle structure and morphology. Using such an approach, we reveal that the on-pathway oligomeric intermediate is in parallel β-sheet configuration featuring a frequency at 1622 cm(-1) and the oligomer-to-fibril transition is accompanied by a spectral transition from 1622 to 1618 cm(-1). We also discover the beneficial role of the off-pathway oligomer in the capturing of the transient on-pathway oligomeric intermediate by serving as a monomer-releasing reservoir. This approach should also be useful in other amyloidogenic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp504201k | DOI Listing |
J Mol Biol
June 2024
Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA. Electronic address:
Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-β core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the htt segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich htt tetrameric structure suggested to be this critical intermediate was recently reported.
View Article and Find Full Text PDFBiophys J
October 2023
Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India. Electronic address:
Plasma membrane-induced protein folding and conformational transitions play a central role in cellular homeostasis. Several transmembrane proteins are folded in the complex lipid milieu to acquire a specific structure and function. Bacterial pore forming toxins (PFTs) are proteins expressed by a large class of pathogenic bacteria that exploit the plasma membrane environment to efficiently undergo secondary structure changes, oligomerize, and form transmembrane pores.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520.
The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-β42 (Aβ42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies.
View Article and Find Full Text PDFFront Mol Biosci
February 2023
Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
Amyloid Diseases involve the growth of disease specific proteins into amyloid fibrils and their deposition in protein plaques. Amyloid fibril formation is typically preceded by oligomeric intermediates. Despite significant efforts, the specific role fibrils or oligomers play in the etiology of any given amyloid disease remains controversial.
View Article and Find Full Text PDFBrain
August 2023
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA.
Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!