The interaction between fungi and plants that form ectomycorrhizae (ECM) promotes alterations in the gene expression profiles of both organisms. Fungal genes expression related to metabolism were evaluated at the pre-symbiotic stage and during the ECM development between Scleroderma laeve and Eucalyptus grandis. Partial sequences of ATP synthase (atp6), translation elongation factor (ef1α), the RAS protein (ras), and the 17S rDNA genes were isolated. The expression of the atp6 and 17S rDNA genes during the pre-symbiotic stage showed an approximately threefold increase compared to the control. During ECM development, the expression of the 17S rDNA gene showed a 4.4-fold increase after 3 days of contact, while the expression of the atp6 gene increased 7.23-fold by the 15th day, suggesting that protein synthesis and respiratory chain activities are increased during the formation of the mantle and the Hartig net. The ras gene transcripts were only detected by RT-PCR 30 days after fungus-plant contact, suggesting that RAS-mediated signal transduction pathways are functional during the establishment of symbiosis. The present study demonstrates that alterations in gene expression occur in response to stimuli released by the plant during ECM association and increases the understanding of the association between S. laeve and E. grandis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.201400253DOI Listing

Publication Analysis

Top Keywords

17s rdna
16
gene expression
12
scleroderma laeve
8
laeve eucalyptus
8
eucalyptus grandis
8
atp6 17s
8
ras gene
8
alterations gene
8
pre-symbiotic stage
8
ecm development
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!