Fast cholesterol flip-flop and lack of swelling in skin lipid multilayers.

Soft Matter

School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.

Published: October 2014

Atomistic simulations were performed on hydrated model lipid multilayers that are representative of the lipid matrix in the outer skin (stratum corneum). We find that cholesterol transfers easily between adjacent leaflets belonging to the same bilayer via fast orientational diffusion (tumbling) in the inter-leaflet disordered region, while at the same time there is a large free energy cost against swelling. This fast flip-flop may play an important role in accommodating the variety of curvatures that would be required in the three dimensional arrangement of the lipid multilayers in skin, and for enabling mechanical or hydration induced strains without large curvature elastic costs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4sm01161aDOI Listing

Publication Analysis

Top Keywords

lipid multilayers
12
fast cholesterol
4
cholesterol flip-flop
4
flip-flop lack
4
lack swelling
4
swelling skin
4
lipid
4
skin lipid
4
multilayers atomistic
4
atomistic simulations
4

Similar Publications

Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.

View Article and Find Full Text PDF

Non-culprit plaque healing on serial OCT imaging and future outcome in patients with acute coronary syndromes.

Atherosclerosis

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Department of Cardiology of the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China. Electronic address:

Background And Aims: Histologic studies indicated that healed plaque, characterized by a multilayered pattern, is indicative of prior atherothrombosis and subsequent healing. However, longitudinal in vivo data on healed plaque formation in non-culprit plaques are limited. This study aimed to investigate serial changes and clinical significance of new layered pattern formation in non-culprit plaques in patients with acute coronary syndromes (ACS) using serial optical coherence tomography (OCT) imaging.

View Article and Find Full Text PDF

Evaluation of Machine Learning Based QSAR Models for the Classification of Lung Surfactant Inhibitors.

Environ Health (Wash)

December 2024

Department of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States.

Inhaled chemicals can cause dysfunction in the lung surfactant, a protein-lipid complex with critical biophysical and biochemical functions. This inhibition has many structure-related and dose-dependent mechanisms, making hazard identification challenging. We developed quantitative structure-activity relationships for predicting lung surfactant inhibition using machine learning.

View Article and Find Full Text PDF

Pulmonary surfactant is a membranous complex that enables breathing dynamics at the respiratory surface. Extremely low values of surface tension are achieved at end-expiration thanks to a unique mixture of lipids and proteins. In particular, the hydrophobic surfactant proteins, specially the protein SP-B, are crucial for surfactant biophysical function, in order to provide the surfactant lipid matrix with the ability to form membranous multi-layered interfacial films that sustain optimal mechanical properties.

View Article and Find Full Text PDF

Mechanism of differentiated and targeted catalysis in complex lipid system under lipase and lipoxygenase mediation.

Food Chem

December 2024

School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

The regulation of reaction rate differentiation, catalytic precursor differentiation, and end-product differentiation during enzyme-mediated reactions within complex lipid systems is a key area of research in flavor regulation. A multilayer lipid oxidation model, utilizing Plaice bone oil (PBO), lipase, and lipoxygenase, was employed to investigate oxidation differences between various lipids and corresponding flavor formation patterns. Lipase treatment resulted in higher levels of non‑oxygenated volatile compounds and saturated aldehydes, whereas lipoxygenase treatment increased oxygenated compounds, particularly (E)-2-hexenal, 1-penten-3-one, and 2-pentylfuran.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!