AI Article Synopsis

  • The study explores how the placement of O-trifluoroacetyl (TFA) groups on thioglycoside glycosyl donors affects the stereoselectivity during the formation of α-arabinofuranosides, particularly looking at disaccharide development.
  • It was found that the combination of TFA and 2-O-(triisopropylsilyl) (TIPS) can enhance 1,2-cis-selectivity in arabinofuranosylation, which is influenced by the type of glycosyl acceptor used.
  • The research highlights that the optimal pairing of glycosyl donors and acceptors is essential for achieving both high donor reactivity and desired β-stereoselect

Article Abstract

The influence of O-trifluoroacetyl (TFA) groups at different positions of thioglycoside glycosyl donors on stereoselectivity of α-arabinofuranosylation leading to corresponding disaccharides was studied. It was shown that TFA group in thioglycoside glycosyl donors, when combined with 2-O-(triisopropylsilyl) (TIPS) non-participating group, may be regarded as an electron-withdrawing protecting group that may enhance 1,2-cis-selectivity in arabinofuranosylation, the results strongly depending on the nature of glycosyl acceptor. The reactivities of the glycosyl donors were compared with those of a similar thioglycoside with O-pentafluoropropionyl groups and the known phenyl 3,5-O-(di-tert-butylsilylene)-1-thio-α-d-arabinofuranosides with 2-O-TIPS and 2-O-benzyl groups. The 'matching' in the donor-acceptor combination was found to be critical for achieving both high reactivity of glycosyl donor and β-stereoselectivity of arabinofuranosylation. The use of glycosyl donors with TFA and silyl protection may be useful in the realization of the benzyl-free approach to oligoarabinofuranosides with azido group in aglycon-convenient building blocks for the preparation of neoglycoconjugates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2014.05.017DOI Listing

Publication Analysis

Top Keywords

glycosyl donors
16
nature glycosyl
8
glycosyl acceptor
8
thioglycoside glycosyl
8
glycosyl
7
o-trifluoroacetyl protection
4
protection profound
4
profound influence
4
influence nature
4
acceptor benzyl-free
4

Similar Publications

Synthesis of 2-Deoxyglycosides with Exclusive β-Configuration Using 2-SAc Glycosyl Bromide Donors.

Molecules

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Ministry of Education, Luoyu Road 1037, Wuhan 430074, China.

In this study, we developed an indirect method for the synthesis of 2-deoxyglycosides with an exclusive β-configuration using glucosyl and galactosyl bromide donors with 2-thioacetyl (SAc) groups. The 2-SAc glucosyl and galactosyl bromide donors were easily obtained through the treatment of 1-OAc, 2-SAc glucose and galactose with HBr-CHCOOH solution, respectively. The glycosylation of such donors with acceptors under an improved Koenigs-Knorr condition resulted in glycosylation products with an exclusive β-configuration in excellent yields.

View Article and Find Full Text PDF

A total chemical synthesis of spacer-armed Forssman pentasaccharide is reported. The choice of the 2(donor) + 3(acceptor) block scheme, the optimal combination of a limited number of simple protecting groups and the sequence of deprotection steps allowed to achieve the high yield and stereoselectivity of glycosylation and to avoid losses during deprotection. The target pentasaccharide was obtained in a 10-mg scale.

View Article and Find Full Text PDF

Comparison of the reactivity of sialyl chlorides and bromides based on -acetylneuraminic acid (Neu5Ac) and its deaminated analogue (KDN) in reactions with MeOH and -PrOH without a promoter revealed that the acetoxy group at C-5 in a molecule of a sialic acid glycosyl donor can destabilize the corresponding glycosyl cation making the S1-like reaction pathway unfavorable. A change to the S2-like reaction pathway ensures preferential formation of the α-glycoside.

View Article and Find Full Text PDF

Steviol glycosides (SGs) are noncaloric natural sweeteners found in the leaves of stevia (). These diterpene glycosides are biosynthesized by attaching varying numbers of monosaccharides, primarily glucose, to steviol aglycone. Rebaudioside (Reb) D and Reb M are highly glucosylated SGs that are valued for their superior sweetness and organoleptic properties, yet they are present in limited quantities in stevia leaves.

View Article and Find Full Text PDF

Total Synthesis of Kasugamycin.

Org Lett

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.

We present an efficient synthetic pathway for kasugamycin, an aminoglycoside antibiotic, utilizing naturally derived carbohydrates as starting materials. This synthesis effectively addresses stereochemical complexities by employing the selective reduction of d-fucal, which generates a crucial 3-deoxyglycal intermediate. This intermediate facilitates the introduction of amino groups at the C-2 and C-4 positions, which is essential for the synthesis of kasugamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!