Schistosomiasis is a chronically debilitating disease caused by parasitic worms of the genus Schistosoma, and it is a global problem affecting over 240 million people. Little is known about the regulatory proteins and mechanisms that control schistosome host invasion, gene expression, and development. Schistosome larvae, cercariae, are transiently free-swimming organisms and infectious to man. Cercariae penetrate human host skin directly using proteases that degrade skin connective tissue. These proteases are secreted from anucleate acetabular glands that contain many proteins, including heat shock proteins. Heat shock transcription factors are strongly conserved activators that play crucial roles in the maintenance of cell homeostasis by transcriptionally regulating heat shock protein expression. In this study, we clone and characterize the schistosome Heat shock factor 1 gene (SmHSF1). We verify its ability to activate transcription using a modified yeast one-hybrid system, and we show that it can bind to the heat shock binding element (HSE) consensus DNA sequence. Our quantitative RT-PCR analysis shows that SmHSF1 is expressed throughout several life-cycle stages from sporocyst to adult worm. Interestingly, using immunohistochemistry, a polyclonal antibody raised against an Hsf1-peptide demonstrates a novel localization for this conserved, stress-modulating activator. Our analysis suggests that schistosome Heat shock factor 1 may be localized to the acetabular glands of infective cercariae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117452 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0003051 | DOI Listing |
BMC Genomics
January 2025
Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.
View Article and Find Full Text PDFNat Commun
January 2025
Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation.
View Article and Find Full Text PDFDNAJC15 is a mitochondrial TIMM23-related co-chaperonin known for its role in regulating oxidative phosphorylation efficiency, oxidative stress response and lipid metabolism. Recently, it has been proposed that the loss of DNAJC15 correlates with cisplatin (CDDP)-resistance onset in ovarian cancer (OC), suggesting this protein as a potential prognostic factor during OC progression. However, the molecular mechanisms through which DNAJC15 contributes to CDDP response remains poorly investigated.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, IA 50010, USA.
Indices of climate vulnerability are used to predict species' vulnerability to climate change based on intrinsic physiological traits, such as thermal tolerance, thermal sensitivity and thermal acclimation, but rarely is the consistency among indices evaluated simultaneously. We compared the thermal physiology of queen bumblebees between a species experiencing local declines () and a species exhibiting continent-wide increases (). We conducted a multi-week acclimation experiment under simulated climate warming to measure critical thermal maximum (CT), critical thermal minimum (CT), the thermal sensitivity of metabolic rate and water loss rate and acclimation in each of these traits.
View Article and Find Full Text PDFBiol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!