Spiruchostatin A (SP-A) and spiruchostatin B (SP-B) are the potent histone deacetylase inhibitors (HDACi), that has the potential for chemotherapy of leukemia but the exact mechanism of these compounds remains unclear. In the present study, the role of reactive oxygen species (ROS) production and the mechanism involved in the apoptosis was investigated in human lymphoma U937 cell. When the U937 cells were treated with SP-A and SP-B for 24h at different concentrations, evidence of apoptotic features, including increase in DNA fragmentation and changes in nuclear morphology, were obtained. SP-B showed maximum potency to induce apoptosis, while SP-A was less potent. Apoptosis was also determined by increase in the fraction of sub-G1 cells and Annexin V-FITC staining cells. SP-A and SP-B induced apoptosis was accompanied by significant increase in the formation of intracellular reactive oxygen species (ROS). Pre-treatment with N-acetyl-l-cysteine (NAC), significantly inhibited the SP-A and SP-B mediated apoptosis, suggesting a vital role of ROS involved in the lethality of both agents. Moreover, SP-A and SP-B treatment resulted in the loss of mitochondrial membrane potential (MMP), and Fas, caspase-8 and caspase-3 activation. In addition Bid activation and the release of cytochrome-c to the cytosol was also observed. In this study, we suggest that a marked induction of intracellular ROS mediated mitochondrial pathway and the Fas plays a role in the SP-A and SP-B induced apoptosis. Taken together, our data provides further insights of the mechanism of action of SP-A and SP-B and their potential application as novel chemotherapeutic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2014.07.004DOI Listing

Publication Analysis

Top Keywords

sp-a sp-b
24
reactive oxygen
12
histone deacetylase
8
deacetylase inhibitors
8
induce apoptosis
8
human lymphoma
8
lymphoma u937
8
u937 cells
8
sp-a
8
sp-b
8

Similar Publications

Since its outbreak, the novel coronavirus (COVID-19) has significantly impacted the pediatric population. Pulmonary surfactant dysfunction has been linked to other respiratory diseases in children and COVID-19 in adults, but its role in COVID-19 severity remains unclear. We hypothesized that elevated surfactant protein (SP) levels and single nucleotide polymorphisms (SNPs) of SP genes are associated with severe COVID-19 in children.

View Article and Find Full Text PDF

Alveolar epithelial type II cells (AEII) synthesize, store, and recycle surfactant. Lipids and primarily hydrophobic surfactant proteins (SPs) are stored in lamellar bodies (Lbs) while the hydrophilic SPs and the precursors of hydrophobic SPs are stored in multivesicular bodies (mvb). ErbB4-receptor and its ligand neuregulin (NRG) are important regulators of fetal lung development and fetal surfactant synthesis.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has led to significant concern due to its impact on human health, particularly through pneumonia-induced lung damage. Surfactant proteins A and D (SP-A and SP-D) are implicated in COVID-19 lung damage, but the role of surfactant protein B (SP-B) remains unclear.

Methods: We conducted a single-centre, prospective observational study involving 73 hospitalised COVID-19 pneumonia patients.

View Article and Find Full Text PDF

Studying the interfacial activity and structure of pulmonary surfactant complexes.

Chem Phys Lipids

January 2025

Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain. Electronic address:

Pulmonary surfactant (PS) is a membranous complex that coats the respiratory air-liquid interface in air-breathing animal lungs. Its main function is to minimize the surface tension at the end of expiration, what is needed for preventing alveolar collapse. Although the tension reduction capabilities of surfactant depend on the formation of air-exposed phospholipid-enriched monolayers, the interfacial surfactant films are far from simple monolayers.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze surfactant apoprotein expression and detect Brucella sp. antigens in the lungs of aborted bovine fetuses and weak neonatal calves, utilizing techniques like ABC and indirect immunofluorescence.
  • Out of 46 aborted fetuses and 20 weak neonatal calves, researchers found Brucella sp. in 24 cases of pneumonia in fetuses and additional cases in newborns, with positive identification methods including bacterial culture and immunohistochemistry.
  • Findings revealed that surfactant synthesis in bovine fetuses starts around the 7th month of gestation, and broncho-pneumonia in calves suggests potential intrauterine Brucella
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!