Decomposition of aqueous monofluorophenols (MFPs) was investigated by contact glow discharge electrolysis (CGDE). During CGDE, both MFPs and the corresponding total organic carbon (TOC) in water were consumed smoothly, suggesting that carbon atoms of benzene nucleus could be eventually mineralized to inorganic carbon (IC). And all the fluorine atoms in the MFPs were equally converted to fluoride ions. Based on the primary intermediates from each starting materials, it showed that aromatic hydroxylation preferentially occurred at the para- or ortho- position to the phenolic OH group of each MFPs. The disappearance of both MFPs and TOC followed the first-order rate law. The apparent rate constants for the decay of MFPs were independent from the pKa values of MFPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1001-0742(14)60652-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!