The functional properties of transition metal dichalcogenides (TMDs) may be promoted by the inclusion of other elements. Here, we studied the local stoichiometry of single cobalt promoter atoms in an industrial-style MoS2-based hydrotreating catalyst. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy show that the Co atoms occupy sites at the (-100) S edge terminations of the graphite-supported MoS2 nanocrystals in the catalyst. Specifically, each Co atom has four neighboring S atoms that are arranged in a reconstructed geometry, which reflects an equilibrium state. The structure agrees with complementary studies of catalysts that were prepared under vastly different conditions and on other supports. In contrast, a small amount of residual Fe in the graphite is found to compete for the S edge sites, so that promotion by Co is strongly sensitive to the purity of the raw materials. The present single-atom-sensitive analytical method therefore offers a guide for advancing preparative methods for promoted TMD nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201405690DOI Listing

Publication Analysis

Top Keywords

visualizing stoichiometry
4
stoichiometry industrial-style
4
industrial-style co-mo-s
4
co-mo-s catalysts
4
catalysts single-atom
4
single-atom sensitivity
4
sensitivity functional
4
functional properties
4
properties transition
4
transition metal
4

Similar Publications

Among the various cations, the Fe ion is one of the most critical transition metal ions in living cells for many cellular functions and enzymatic activities. The decrease or overloading of Fe can lead to different disruptions in humans. Also, Fe, highly toxic, is very common in all industrial wastewater.

View Article and Find Full Text PDF

Many industries use copper metal ions (Cu ions), and their salts are utilized as supplemental materials in both agriculture and medicine. Identifying and monitoring these Cu ions in biological and environmental specimens is crucial due to their association with several health issues. In this investigation, we have designed a simple quinoline-based receptor (E)-3-(((2,4-di-tert-butyl-5-hydroxyphenyl)imino)methyl)-6-methoxyquinolin-2(1H)-one (QAP) containing imine functional groups to inspect its capability to identify metal ions in a semi-aqueous medium.

View Article and Find Full Text PDF

Oxidation Behavior of Nanocrystalline Alloys.

Materials (Basel)

November 2024

School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA.

Thermo-mechanically stabilized nanocrystalline (NC) alloys are increasingly valued for their enhanced mechanical strength and high-temperature stability, achieved through thermodynamic and kinetic stabilization methods. However, their fine-grained structure also increases susceptibility to internal oxidation due to higher atomic diffusivity associated with a greater volume fraction of grain boundaries (GBs). By incorporating solutes that form protective oxides, or the so-called thermally growing oxides (TGO), this vulnerability can be mitigated.

View Article and Find Full Text PDF

A Copper-substituted lead apatite, named LK-99 by its authors, has recently emerged as a candidate for the world's first ambient-conditions superconductor, but has since not demonstrated the anticipated properties when subject to independent scrutiny. In this review we cover the experimental and theoretical studies that have been dedicated to this unusual material, while briefly discussing the original arXiv papers. So far, all the synthesis methods result in the formation of a multiphase material with unpredictable structure and unstable stoichiometry.

View Article and Find Full Text PDF

High-resolution mass spectrometry (HRMS) has become an indispensable tool in the characterization of organic aerosols (OA) providing information on air quality, health assessment, climate trends, reactions, and source apportionment. Spectra-derived lists of formulas and their relative abundances are used to compare ambient OA from different sources or to monitor secondary OA formation under controlled laboratory conditions in smog chamber experiments. Various techniques are implemented to visualize common and unique features, series of precursors, and products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!