Experimental and DFT studies on the vibrational and electronic spectra of 9-p-tolyl-9H-carbazole-3-carbaldehyde.

Spectrochim Acta A Mol Biomol Spectrosc

College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China. Electronic address:

Published: January 2015

AI Article Synopsis

Article Abstract

The compound 9-p-tolyl-9H-carbazole-3-carbaldehyde (HCCD) was synthesized and characterized by X-ray diffraction, FT-IR, FT-Raman and UV-Vis spectra. The X-ray diffraction study showed that HCCD has a Z-configuration. The benzene ring including methyl is twisted from the mean plane of the carbazole group by 59.7(3)°, which is comparable with the calculated result 65° for B3LYP/6-311++G(d, p) method. Vibrational spectra and electronic spectra measurements were made for the compound. Optimized geometrical structure and harmonic vibrational frequencies were computed with B-based DFT (BLYP, B3LYP and cam-B3LYP) methods, and WB-based DFT (WB97, WB97X and WB97XD) methods and ab initio RHF method using 6-311++G(d, p) basis set. Assignments of the observed spectra were proposed. The equilibrium geometries computed by all of the methods were compared with X-ray diffraction results. The absorption spectra of the title compound were computed both in gas phase and in DMF solution using TD-(cam)B3LYP/6-311++G(d, p) and PCM-(cam)B3LYP/6-311++G(d, p) approaches, respectively. The calculated results provide good descriptions of the bands maxima in the observed electronic spectrum. Temperature dependence of thermodynamic parameters in the range of 100-1000 K was determined. The natural atomic hybrids were calculated and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.06.103DOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
12
electronic spectra
8
spectra
6
experimental dft
4
dft studies
4
studies vibrational
4
vibrational electronic
4
spectra 9-p-tolyl-9h-carbazole-3-carbaldehyde
4
9-p-tolyl-9h-carbazole-3-carbaldehyde compound
4
compound 9-p-tolyl-9h-carbazole-3-carbaldehyde
4

Similar Publications

Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.

View Article and Find Full Text PDF

This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.

View Article and Find Full Text PDF

The 18e saturated rhodium(III) species [Rh(H)(X)(κ2-NSitBu2)(bipyMe2)] (NSitBu2 = {4-methylpyridine-2-yloxy}ditertbutylsilyl; bipyMe2 = 4,4´-dimethylbipyridine) (X = Cl, 1; OTf, 2) have been prepared and characterized by NMR spectroscopy and in the case of 2 it has been possible to determine its solid-state structure by X-ray diffraction. Complex 1 has proven to be an effective catalyst precursor for the reaction of styrene derivatives with hydrosilanes in CD2Cl2. However, under catalytic conditions complex 2 decomposes.

View Article and Find Full Text PDF

A series of compositions NiInSn ( = 0-1) were synthesized by conventional high-temperature synthesis, and as-synthesized samples were checked by powder X-ray diffraction experiments. NiInSn ( < 0.7) mainly forms the ternary variant of the CoSn-type structure (6/), whereas, = 0.

View Article and Find Full Text PDF

The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs' solid thin film and the chlorinated vapor phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!