Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues.

Bioanalysis

CEMBIO (Center for Metabolomics & Bioanalysis), Facultad de Farmacia, Universidad San Pablo CEU, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain.

Published: March 2015

Invasive, site-specific metabolite information could be better obtained from tissues. Hence, highly sensitive mass spectrometry-based metabolomics coupled with separation techniques are increasingly in demand in clinical research for tissue metabolomics application. Applying these techniques to nontargeted tissue metabolomics provides identification of distinct metabolites. These findings could help us to understand alterations at the molecular level, which can also be applied in clinical practice as screening markers for early disease diagnosis. However, tissues as solid and heterogeneous samples pose an additional analytical challenge that should be considered in obtaining broad, reproducible and representative analytical profiles. This manuscript summarizes the state of the art in tissue (human and animal) treatment (quenching, homogenization and extraction) for nontargeted metabolomics with mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio.14.119DOI Listing

Publication Analysis

Top Keywords

nontargeted metabolomics
8
tissue metabolomics
8
metabolomics
5
analytical protocols
4
protocols based
4
based lc-ms
4
lc-ms gc-ms
4
gc-ms ce-ms
4
ce-ms nontargeted
4
metabolomics biological
4

Similar Publications

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Glyphosate, a widely used herbicide globally, has prompted concerns regarding its potential health impacts. This study aimed to explore the link between glyphosate exposure and renal function by combining NHANES, a zebrafish model, and metabolomics. A cross-sectional analysis of 2013-2014 NHANES data investigated the relationship between glyphosate exposure and renal function [albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR)].

View Article and Find Full Text PDF

2-Amino-3-methylimidazole [4,5-] quinoline (IQ) is a kind of heterocyclic amine (HCAs) with high carcinogenicity in hot processed meat. Rutin (Ru) is a flavonoid compound with anti-inflammatory and antioxidant properties. However, whether Ru is scatheless under IQ-stimulated potential unhealthy conditions, especially liver function, in vivo, is unknown.

View Article and Find Full Text PDF

Revisiting the Metabolism of Donepezil in Rats Using Non-Targeted Metabolomics and Molecular Networking.

Pharmaceutics

January 2025

BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.

View Article and Find Full Text PDF

: The mechanism of polysaccharide-based nanocarriers in enhancing photodynamic immunotherapy in colorectal cancer (CRC) remains poorly understood. : The effects of TPA-3BCP-loaded cholesteryl hemisuccinate- polysaccharide nanoparticles (DOP@3BCP NPs) and their potential molecular mechanism of action in a tumor-bearing mouse model of CRC were investigated using non-targeted metabolomics and transcriptomics. Meanwhile, a histopathological analysis (H&E staining, Ki67 staining, and TUNEL assay) and a qRT-PCR analysis revealed the antitumor effects of DOP@3BCP NPs with and without light activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!