The more we search, the more we find: discovery of a new lineage and a new species complex in the genus Asparagopsis.

PLoS One

Institut de Recherche pour le Développement (IRD), UR227 CoRéUs-LabEx-CORAIL, Noumea, New Caledonia.

Published: November 2015

In the past few decades, in the marine realm in particular, the use of molecular tools has led to the discovery of hidden taxonomic diversity, revealing complexes of sister species. A good example is the red algal genus Asparagopsis. The two species (A. armata and A. taxiformis) recognized in this genus have been introduced in many places around the world. Within the nominal species A. taxiformis, previous molecular analyses have uncovered several lineages, suggesting the existence of sister species or subspecies. Although the genus has been well studied in some regions (e.g., the Mediterranean Sea and Hawaii), it remains poorly investigated in others (e.g., South Pacific). Our study mainly focused on these latter areas to clarify lineages and better determine lineage status (i.e., native vs. introduced). A total of 188 specimens were collected from 61 sites, 58 of which had never been sampled before. We sequenced the DNA from samples for three markers and obtained 112 sequences for the chloroplastic RuBisCo spacer, 118 sequences for the nuclear LSU rRNA gene, and 174 for the mitochondrial spacer cox2-3. Phylogenetic analyses using all three markers suggested the existence of two cryptic sister species with the discovery of a new clade within A. armata. This clade was found only in Western Australia, Tasmania and New Zealand, and is thus restricted to a subregional biogeographic unit. We also discovered a new, fifth lineage for A. taxiformis restricted to the South Pacific and Western Australia. Except for this newly described lineage, all other lineages showed a global distribution influenced by introduction events. These results illustrate the difficulty in accurately defining cosmopolitan species. Our findings also highlight the need for targeted (i.e., in poorly studied areas) and geographically extensive sampling efforts when studying taxa that have been introduced globally and that are likely to hide species complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116237PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103826PLOS

Publication Analysis

Top Keywords

sister species
12
species
8
genus asparagopsis
8
south pacific
8
three markers
8
western australia
8
search find
4
find discovery
4
lineage
4
discovery lineage
4

Similar Publications

The genus is the most diverse group in the family Ophidiidae. In this study, we assembled and reported the complete mitochondrial genome of for the first time. The mitochondrial genome is 17,316 bp in length and contains 13 PCGs, 2 rRNAs, and 22 tRNAs.

View Article and Find Full Text PDF

Crimsonwings are estrildid finches found in the understory of montane rainforests of sub-Saharan Africa. The genus includes four species: Sharpe 1902, Sharpe 1902, (Hartlaub 1874), and Reichenow 1892. The first two are endemic to the Albertine Rift, while the latter two are more widespread.

View Article and Find Full Text PDF

In this study, we developed and validated a novel microhaplotype (MH) panel, the FGID Microhaplotype Kit, which contains 232 loci and was specifically designed for forensic kinship analysis. The performance of the panel was evaluated through rigorous testing that included sensitivity, species specificity, inhibitor resistance, uniformity, stability, accuracy and mixture deconvolution. The results showed that the kit is capable of reliably detecting all loci with minimal DNA input.

View Article and Find Full Text PDF

The Hypericaceae family, comprising nine genera and over seven hundred species, includes plants traditionally used for medicinal purposes. In this study, we performed high-throughput sequencing on three species: , , and , and conducted comparative genomic analyses with related species. The chloroplast genome sizes were 152,654 bp, 122,570 bp, and 137,652 bp, respectively, with an average GC content of 37.

View Article and Find Full Text PDF
Article Synopsis
  • Species in the Echeneidae family are known for their ability to attach to hosts using a sucking disc; this study analyzed the mitochondrial genomes of three such species.
  • The mitochondrial genomes varied slightly in length and contained essential genes for protein coding, rRNA, tRNA, and a D-loop region, with most genes demonstrating specific patterns in their codon usage and genetic structure.
  • Phylogenetic analysis revealed distinct relationships among the species, with one species forming its own group and the others being closely related, thus adding valuable data to the understanding of this fish family's classification.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!