Manipulation of chemistry and film growth via external electric fields is a longstanding goal in surface science. Numerous systems have been predicted to show such effects but experimental evidence is sparse. Here we demonstrate in a custom-designed UHV apparatus that the application of spatially extended, homogeneous, very high (>1 V nm(-1)) DC-fields not only changes the system energetics but triggers dynamic processes which become important much before static contributions appreciably modify the potential energy landscape. We take a well characterized ultrathin NiO film on a Ag(100) support as a proof-of-principle test case, and show how it gets reduced to supported Ni clusters under fields exceeding the threshold of +0.9 V nm(-1). Using an effective model, we trace the observed interfacial redox process down to a dissociative electron attachment resonant mechanism. The proposed approach can be easily implemented and generally applied to a wide range of interfacial systems, thus opening new opportunities for the manipulation of film growth and reaction processes at solid surfaces under strong external fields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr02882aDOI Listing

Publication Analysis

Top Keywords

electric fields
8
film growth
8
redox processes
4
processes nanostructured
4
nanostructured interface
4
interface strong
4
strong electric
4
fields
4
fields manipulation
4
manipulation chemistry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!