Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate and is able to overcome the hydration tendency of the reference drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062091 | PMC |
http://dx.doi.org/10.1107/S2052252514004229 | DOI Listing |
Arch Pharm (Weinheim)
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.
The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.
View Article and Find Full Text PDFWater Res
December 2024
School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China. Electronic address:
Synergism of piezoelectricity and photocatalysis is an effective approach for pollutant degradation and removal, and has garnered considerable attention. Nonetheless, great challenges still remain in recombination and slow migration rate of charge carriers. For response, a novel Three-in-One strategy based on MXene/ZnS/FeO (MZF) was developed to enhance the piezoelectric photocatalytic activity via achieving a triple effect: Dual Schottky heterojunction, Interface electric field, and Oxygen vacancy.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2024
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. Electronic address:
Influenza A virus (IAV) poses a serious global threat to public health. There is an urgent need to develop new anti-IAV agents due to the limitations of the current antiviral drugs in clinical practice. Herein, based on compound I-13e, we designed and synthesized 23 substituted quinoline derivatives containing piperazine moieties and evaluated their in vitro anti-IAV activity.
View Article and Find Full Text PDFEnviron Health (Wash)
December 2024
School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
To clarify the effect of the fluorine atom and piperazine ring on norfloxacin (NOR), NOR degradation products (NOR-DPs, P1-P8) were generated via UV combined with hydrogen peroxide (UV/HO) technology. NOR degradation did not significantly affect cytotoxicity of NOR against BV2, A549, HepG2, and Vero E6 cells. Compared with that of NOR, mutagenicity and median lethal concentration of P1-P8 in fathead minnow were increased, and bioaccumulation factor and oral median lethal dose of P1-P8 in rats were decreased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!