Nucleolar sequestration of the RelA subunit of nuclear factor (NF)-κB is an important mechanism for regulating NF-κB transcriptional activity. Ubiquitylation, facilitated by COMMD1 (also known as MURR1), acts as a crucial nucleolar-targeting signal for RelA, but how this ubiquitylation is regulated, and how it differs from cytokine-mediated ubiquitylation, which causes proteasomal degradation of RelA, is poorly understood. Here, we report a new role for p300 (also known as EP300) in controlling stimulus-specific ubiquitylation of RelA, through modulation of COMMD1. We show that p300 is required for stress-mediated ubiquitylation and nucleolar translocation of RelA, but that this effect is indirect. We also demonstrate that COMMD1 is acetylated by p300 and that acetylation protects COMMD1 from XIAP-mediated proteosomal degradation. Furthermore, we demonstrate that COMMD1 acetylation is enhanced by aspirin-mediated stress, and that this acetylation is absolutely required for the protein to bind RelA under these conditions. In contrast, tumour necrosis factor (TNF) has no effect on COMMD1 acetylation. Finally, we demonstrate these findings have relevance in a whole tissue setting. These data offer a new paradigm for the regulation of NF-κB transcriptional activity, and the multiple other pathways controlled by COMMD1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150058PMC
http://dx.doi.org/10.1242/jcs.149328DOI Listing

Publication Analysis

Top Keywords

commd1
8
ubiquitylation nucleolar
8
nucleolar translocation
8
translocation rela
8
nf-κb transcriptional
8
transcriptional activity
8
demonstrate commd1
8
commd1 acetylation
8
rela
7
ubiquitylation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!