Sustained forward migration through a fibrillar extracellular matrix requires localization of protrusive signals. Contact with fibronectin at the tip of a cell protrusion activates Rac1, and for linear migration it is necessary to dampen Rac1 activity in off-axial positions and redistribute Rac1 from non-protrusive membrane to the leading edge. Here, we identify interactions between coronin-1C (Coro1C), RCC2 and Rac1 that focus active Rac1 to a single protrusion. Coro1C mediates release of inactive Rac1 from non-protrusive membrane and is necessary for Rac1 redistribution to a protrusive tip and fibronectin-dependent Rac1 activation. The second component, RCC2, attenuates Rac1 activation outside the protrusive tip by binding to the Rac1 switch regions and competitively inhibiting GEF action, thus preventing off-axial protrusion. Depletion of Coro1C or RCC2 by RNA interference causes loss of cell polarity that results in shunting migration in 1D or 3D culture systems. Furthermore, morpholinos against Coro1C or RCC2, or mutation of any of the binding sites in the Rac1-RCC2-Coro1C complex delays the arrival of neural crest derivatives at the correct location in developing zebrafish, demonstrating the crucial role in migration guidance in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179493PMC
http://dx.doi.org/10.1242/jcs.154864DOI Listing

Publication Analysis

Top Keywords

coro1c rcc2
12
rac1
11
rac1 non-protrusive
8
non-protrusive membrane
8
rac1 activation
8
migration
5
coronin-1c rcc2
4
rcc2 guide
4
guide mesenchymal
4
mesenchymal migration
4

Similar Publications

Gastric cancer is one of the malignant tumors in the world. PAK4 plays an important role in the occurrence and development of gastric cancer, especially in the process of invasion and metastasis. Here we discover that CORO1C, a member of coronin family that regulates microfilament and lamellipodia formation, recruits cytoplasmic PAK4 to the leading edge of gastric cancer cells by C-terminal extension (CE) domain of CORO1C (353-457 aa).

View Article and Find Full Text PDF

Purpose: The molecular underpinnings that may prognosticate survival and increase our understanding of tumor development and progression are still poorly understood. This study aimed to define the molecular signatures for malignancy in small cell lung carcinoma (SCLC), which is known for its highly aggressive clinical features and poor prognosis.

Experimental Design: Using clinical specimens, the authors perform a comparative proteomic analysis of high-grade SCLCs and low-grade pulmonary carcinoid tumors (PCTs), both of which are types of neuroendocrine tumors.

View Article and Find Full Text PDF

Sustained forward migration through a fibrillar extracellular matrix requires localization of protrusive signals. Contact with fibronectin at the tip of a cell protrusion activates Rac1, and for linear migration it is necessary to dampen Rac1 activity in off-axial positions and redistribute Rac1 from non-protrusive membrane to the leading edge. Here, we identify interactions between coronin-1C (Coro1C), RCC2 and Rac1 that focus active Rac1 to a single protrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!