The flowering plant Solanum chacoense uses an S-RNase-based self-incompatibility system in order to reject pollen that shares the same genes at the S-locus (S-haplotype) with the style (an incompatible reaction). Two different models have been advanced to explain how compatible pollen tubes are protected from the cytotoxic effects of the S-RNase, sequestration of the S-RNase in a vacuolar compartment or degradation of the S-RNase in the cytoplasm. Here, we examine the subcellular distribution of an S11-RNase 18 and 24 h post pollination (hpp) in compatible and incompatible crosses by immunogold labeling and transmission electron microscopy. We find that the S-RNase is present in the cytoplasm of both compatible and incompatible crosses by 18 hpp, but that almost all the cytoplasmic S-RNase is degraded by 24 hpp in compatible crosses. These results provide compelling evidence that S-RNases are degraded in compatible but not in incompatible pollen tubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.154823 | DOI Listing |
Plant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFBiology (Basel)
December 2024
College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China.
Floral phenology and features are intricately linked to pollinator behavior and pollination systems. is one of the ornamental irises of the family Iridaceae with beautiful flowers and leaves, and little research has been reported on its pollination biology. This study analyzed how phenology, floral features, breeding systems, and pollinator visits affect reproductive success of populations in Jilin Province.
View Article and Find Full Text PDFPlant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
Floral organ development, pollen germination and pollen tube growth are crucial for plant sexual reproduction. Phytohormones maintain these processes by regulating the expression and activity of various transcription factors. ICE1, a MYC-like bHLH transcription factor, has been revealed to be involved in cold acclimatisation of Arabidopsis.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Laboratório de Ecologia Vegetal, Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil.
The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!