In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2014.06.009DOI Listing

Publication Analysis

Top Keywords

srf production
24
production process
24
material balances
20
c&d waste
16
waste material
16
material
15
srf
13
mass energy
12
energy material
12
waste sorting
12

Similar Publications

Ferroptosis, a non-apoptotic form of cell death characterized by the production of reactive oxygen species (ROS) and massive accumulation of lipid peroxidation (LPO), shows significant promise in cancer therapy. However, the overexpression of glutathione (GSH) at the tumor site and insufficient ROS often result in unsatisfactory therapeutic efficacy. A multistage, GSH-consuming, and ROS-providing carrier-free nanodrug capable of efficiently loading copper ions (Cu), sorafenib (SRF), and chlorogenic acid (CGA) (Cu-CGA-SRF, CCS-NDs) is developed to mediate enhanced ferroptosis therapy.

View Article and Find Full Text PDF

Z-scheme CeO-TiO@CNT (CTC) heterojunction is fabricated using hydrothermal method and evaluated for removing mixed pollutants (MIX-P) from ciprofloxacin (CPF) and textile contaminations. CTC demonstrated ≈99% removal efficiency against MIX-P under solar irradiation of ≈10 lumens. High removal efficiency of CTC is attributed to reduced bandgap (E), 2.

View Article and Find Full Text PDF

The present study aimed to establish the feasibility of the wastewater treatment process generated from an oleaginous fermentation plant. Treatment of spent fermentation broth (SFB) poses significant environmental challenges due to its high organic load, recalcitrant compounds, and potential toxicity. The synergistic effects of combining ozone-based advanced oxidation process (O-AOP) with biological treatment for the efficient degradation of pollutants in spent fermentation broth.

View Article and Find Full Text PDF
Article Synopsis
  • The report highlights the efficiency of SbSe nanorods (NRs) in converting light to heat for solar thermal applications, achieving around 57.8% efficiency with specific lasers and heating hybrid membranes to ≈59°C in just 15 minutes.* -
  • Despite their advantages, SbSe NRs have a limited evaporation rate due to hydrophobicity, which restricts water movement to the heated areas, leading to less effective solar evaporation.* -
  • A new macro-channel imprinting technique improves water transport in these hybrid membranes, boosting evaporation efficiency to ≈148% under strong lighting and achieving effective heavy metal removal from water, meeting WHO standards for safe drinking water.*
View Article and Find Full Text PDF

Comprehensive assessment of straw returning with organic fertilizer on paddy ecosystems: A study based on greenhouse gas emissions, C/N sequestration, and risk health.

Environ Res

December 2024

College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China. Electronic address:

High greenhouse gas emissions and soil deterioration are caused by the overuse of chemical fertilizers. To improve soil quality and crop productivity, it is necessary to utilize fewer chemical fertilizers to achieve sustainable agriculture. Organic substitution is a scientific fertilization strategy that will benefit future agricultural productivity development, little is known about how it affects the heavy metal content and trace gas emissions in rice grains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!