Diphenylalanine peptide nano- and microtubes formed by self-assembly demonstrate strongly enhanced and tunable single-photon and two-photon luminescence in the visible range, which appears after heat- or laser treatment of these self-organized peptide microtubes. This process significantly extends the functionality of these microstructures and can trigger a new interest in the optical properties of structures based on short peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201401602 | DOI Listing |
Biochemistry
January 2025
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration () decreases sharply until about 1.
View Article and Find Full Text PDFSmall
February 2025
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Nature
January 2025
Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
Amniote integumentary appendages constitute a diverse group of micro-organs, including feathers, hair and scales. These structures typically develop as genetically controlled units, the spatial patterning of which emerges from a self-organized chemical Turing system with integrated mechanical feedback. The seemingly purely mechanical patterning of polygonal crocodile head scales provides an exception to this paradigm.
View Article and Find Full Text PDFDev Cell
February 2025
Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria. Electronic address:
Adv Healthc Mater
January 2025
Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands.
Dynamic growth factor presentation influences how individual endothelial cells assemble into complex vascular networks. Here, programmable bioinks are developed that facilitate dynamic vascular endothelial growth factor (VEGF) presentation to guide vascular morphogenesis within 3D-bioprinted constructs. Aptamer's high affinity is leveraged for rapid VEGF sequestration in spatially confined regions and utilized aptamer-complementary sequence (CS) hybridization to tune VEGF release kinetics temporally, days after bioprinting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!