Background: Intratracheal aspiration and sepsis are leading causes of acute lung injury that frequently necessitate mechanical ventilation (MV), which may aggravate lung injury thereby potentially increasing the risk of acute kidney injury (AKI). We compared the effects of ventilation strategies and underlying conditions on the development of AKI.

Methods: Spraque Dawley rats were challenged by intratracheal acid instillation or 24 h of abdominal sepsis, followed by MV with a low tidal volume (LVT) and 5 cm H2O positive end-expiratory pressure (PEEP) or a high tidal volume (HVT) and no PEEP, which is known to cause more lung injury after acid instillation than in sepsis. Rats were ventilated for 4 hrs and kidney function and plasma mediator levels were measured. Kidney injury was assessed by microscopy; apoptosis was quantified by TUNEL staining.

Results: During sepsis, but not after acid instillation, MV with HVT caused more renal apoptosis than MV with LVT. Increased plasma active plasminogen activator inhibitor-1 correlated to kidney apoptosis in the cortex and medulla. Increased apoptosis after HVT ventilation during sepsis was associated with a 40% decrease in creatinine clearance.

Conclusions: AKI is more likely to develop after MV induced lung injury during an indirect (as in sepsis) than after a direct (as after intra-tracheal instillation) insult to the lungs, since it induces kidney apoptosis during sepsis but not after acid instillation, opposite to the lung injury it caused. Our findings thus suggest using protective ventilatory strategies in human sepsis, even in the absence of overt lung injury, to protect the kidney.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119441PMC
http://dx.doi.org/10.1186/1471-2369-15-126DOI Listing

Publication Analysis

Top Keywords

lung injury
24
acid instillation
20
kidney apoptosis
12
sepsis
9
mechanical ventilation
8
injury
8
kidney injury
8
tidal volume
8
sepsis acid
8
kidney
7

Similar Publications

E-cigarette or vaping product use-associated lung injury (EVALI) is a potentially severe acute interstitial lung disease primarily observed in the United States, with sporadic cases reported in Europe. EVALI, though rare, could be susceptible to under-diagnosis due to limited awareness and diagnostic suspicion. We present a case of a 19-year-old male in Denmark diagnosed with severe EVALI.

View Article and Find Full Text PDF

Donor-derived cell-free DNA in chronic lung allograft dysfunction phenotypes: a pilot study.

Front Transplant

December 2024

Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of CHROMETA, KU Leuven, Leuven, Belgium.

Long-term survival after lung transplantation is limited due to chronic lung allograft dysfunction (CLAD), which encompasses two main phenotypes: bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). Donor-derived cell-free DNA (dd-cfDNA) is a biomarker for (sub)clinical allograft injury and could be a tool for monitoring of lung allograft health across the (pre)clinical spectrum of CLAD. In this proof-of-concept study, we therefore assessed post-transplant plasma dd-cfDNA levels in 20 CLAD patients (11 BOS and 9 RAS) at three consecutive time points free from concurrent infection or acute rejection, during stable condition, preclinical CLAD, and established CLAD ( = 3 × 20 samples).

View Article and Find Full Text PDF

Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.

View Article and Find Full Text PDF

is the etiologic agent of invasive aspergillosis, a life- threatening fungal pneumonia that is initiated by the inhalation of conidia (spores) into the lung. If the conidia are not cleared, they secrete large quantities of hydrolytic enzymes and toxins as they grow, resulting in extensive damage to pulmonary tissue. Stromal fibroblasts are central responders to tissue damage in many organs, but their functional response to pulmonary injury caused by has not been explored.

View Article and Find Full Text PDF

Effects of different antiplatelet therapy drugs on platelet activation and platelet-leukocyte aggregate formation in early septic ARDS.

BMC Pharmacol Toxicol

January 2025

Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.

Background: In patients with sepsis, platelets are activated and adhere to neutrophils, forming platelet-leukocyte aggregates (PLAs) that lead to the development of MODS. ARDS is one of the main manifestations of septic MODS. We designed this study to explore the effects of different anti-plate therapy drugs on platelet activation and platelet-leukocyte aggregate (PLA) formation in the early stage of septic ARDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!