Interleukin-35 (IL-35), an IL-12 cytokine family member, mediates the immune inhibitory function of regulatory T cells (Treg). We assayed the presence of IL-35 in paraffin-embedded human pancreas cancer (PCAN) and unexpectedly found IL-35 was expressed mainly by epithelial derived PCAN cells, but not by Treg. We further examined the expression and effect of exogenous IL-35 in human PCAN cell lines and found IL-35 promoted growth and inhibited apoptosis in PCAN cell lines. IL-35 induced proliferation correlated with an increase in cyclin B, cyclin D, cdk2, and cdk4 and a decrease in p27 expression, while inhibition of apoptosis was associated with an increase in Bcl-2 and a decrease in TRAILR1. We conclude IL-35 is produced by PCAN in vivo and promotes PCAN cell line growth in vitro. These results might indicate an important new role for IL-35 as an autocrine growth factor in PCAN growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2014.06.020DOI Listing

Publication Analysis

Top Keywords

pcan cell
12
il-35
9
pancreas cancer
8
inhibition apoptosis
8
autocrine growth
8
growth factor
8
cells treg
8
cell lines
8
lines il-35
8
pcan
7

Similar Publications

Improvement of outcome in patients with pancreatic ductal adenocarcinoma (PDAC) requires exploration of novel therapeutic targets. Thus far, most studies of PDAC therapies, including those inhibiting small ubiquitin-like modifications (SUMOylation), have focused on PDAC epithelial cell biology, yet SUMOylation occurs in a variety of cell types. The mechanisms by which SUMOylation impacts PDAC in the context of its tumor microenvironment are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • KRAS inhibitors are medicine that work against a type of pancreatic cancer called PDAC, but patients often develop resistance to these treatments.
  • When patients with a specific mutation (KRASG12C) took certain drugs, new mutations and changes were found that helped the cancer resist the treatment.
  • Using a mix of KRAS inhibitors and chemotherapy showed better results in controlling tumors in mouse models, suggesting that combining treatments might be a smarter approach for patients.
View Article and Find Full Text PDF

Keratin 17 modulates the immune topography of pancreatic cancer.

J Transl Med

May 2024

Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.

Article Synopsis
  • K17 expression influences the immune environment in pancreatic ductal adenocarcinoma (PDAC), affecting tumor growth and patient survival.
  • A study using advanced imaging techniques found that higher K17 levels lead to reduced presence of important immune cells, such as CD8+ T cells and macrophages, in and around tumors.
  • These findings suggest that targeting K17 could enhance the immune response against PDAC, potentially improving immunotherapy strategies for this aggressive cancer.
View Article and Find Full Text PDF

The purpose of this study was to explore the mechanism of "simmer pus and grow meat" method based on bFGF regulating WNT / β-Catenin signaling pathway. Of 100 SPF rats, 25 were randomly selected as blank group, and 75 rats were established chronic infectious wound model and divided into blank group, model group (normal saline treatment, n = 25), experimental group (purple and white ointment treatment, n = 25), and wet burn ointment group (wet burn treatment, n = 25). The wound healing rate of rats was compared.

View Article and Find Full Text PDF

There is increasing evidence indicating the significant role of DDX5 (also called p68), acting as a master regulator and a potential biomarker and target, in tumorigenesis, proliferation, metastasis and treatment resistance for cancer therapy. However, DDX5 has also been reported to act as an oncosuppressor. These seemingly contradictory observations can be reconciled by DDX5's role in DNA repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!