Molecular properties of the high-affinity choline transporter CHT1.

J Biochem

Tokyo University, 7-3-1 Hongo, Tokyo 113-8654, Japan

Published: October 2014

AI Article Synopsis

  • The article discusses the high-affinity choline transporter (CHT1), which is crucial for the uptake of choline in cholinergic neurons, affecting acetylcholine synthesis.
  • CHT1 is characterized as an integral membrane protein with 13 transmembrane segments, belonging to the Na(+)/glucose co-transporter family, and shares some structural homology with its family members.
  • A specific SNP in human CHT1, particularly common among Asians, results in reduced choline uptake activity, leading to discussions on the importance of dietary choline for those with this variant.

Article Abstract

This article summarizes molecular properties of the high-affinity choline transporter (CHT1) with reference to the historical background focusing studies performed in laboratories of the author. CHT1 is present on the presynaptic terminal of cholinergic neurons, and takes up choline which is the precursor of acetylcholine. The Na(+)-dependent uptake of choline by CHT1 is the rate-limiting step for synthesis of acetylcholine. CHT1 is the integral membrane protein with 13 transmembrane segments, belongs to the Na(+)/glucose co-transporter family (SLC5), and has 20-25% homology with members of this family. A single nucleotide polymorphism (SNP) for human CHT1 has been identified, which has a replacement from isoleucine to valine in the third transmembrane segment and shows the choline uptake activity of 50-60% as much as that of wild-type CHT1. The proportion of this SNP is high among Asians. Possible importance of choline diet for those with this SNP was discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvu047DOI Listing

Publication Analysis

Top Keywords

molecular properties
8
properties high-affinity
8
high-affinity choline
8
choline transporter
8
transporter cht1
8
cht1
7
choline
6
cht1 article
4
article summarizes
4
summarizes molecular
4

Similar Publications

[A Review of progresses in research on delayed resistance to EGFR-TKI by Traditional Chinese medicine via inhibiting cancer stem cells properties].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Shandong First Medical University Affiliated Cancer Hospital, Jinan 250117, China. *Corresponding author, E-mail:

It has been popular and challenging to undertake researches on the delay of acquired resistance of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). As key cells for tumor initiation, cancer stem cells (CSC) play an important role in the process of resistance to EGFR-TKI. Although preliminary studies found that traditional Chinese medicine (TCM) could inhibit CSC properties and delay EGFR-TKI resistance, the specific molecular mechanism remains unclear.

View Article and Find Full Text PDF

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Sequential addition of cations increases photoluminescence quantum yield of metal nanoclusters near unity.

Nat Commun

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.

Photoluminescence is one of the most intriguing properties of metal nanoclusters derived from their molecular-like electronic structure, however, achieving high photoluminescence quantum yield (PLQY) of metal core-dictated fluorescence remains a formidable challenge. Here, we report efficient suppression of the total structural vibrations and rotations, and management of the pathways and rates of the electron transfer dynamics to boost a near-unity absolute PLQY, by decorating progressive addition of cations. Specifically, with the sequential addition of Zn, Ag, and Tb into the 3-mercaptopropionic acids capped Au nanoclusters (NCs), the low-frequency vibration of the metal core progressively decreases from 144.

View Article and Find Full Text PDF

Preclinical and in silico studies of 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea: a promising agent for depression and anxiety.

Eur J Pharmacol

January 2025

Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan; Department of Pharmacy, Korea University, Sejong 20019, South Korea. Electronic address:

The study investigated the anxiolytic, antidepressant, sedative/hypnotic and in silico molecular docking properties of the synthetic ephedrine-based derivative of thiourea, 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea. Safety profile of the compound at various doses was determined in an acute toxicity test. Results showed significant anti-anxiety effects of the compound in all mice studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!