Thymic cells were isolated at intervals of between 0 and 144 h from mice that received one intraperitoneal injection of emetine (33 mg/kg), and thymus weight, incorporation of [14C]leucine into proteins and [3H]thymidine into DNA in intact thymic cells, as well as initial rates of protein ADP-ribosylation in permeabilized cells [A. Sóoki-Tóth, F. Asghari, E. Kirsten, and E. Kun (1987) Exp. Cell Res. 170, 93] were simultaneously monitored. The effect of emetine as an inhibitor of protein synthesis [F. Antoni, N. G. Luat, I. Csuka, I. Oláh, A. Sóoki-Tóth, and G. Bánfalvi (1987) Int. J. Immunopharmacol. 9, 333] corresponds to the induction of sequential cellular events, such as cell exit and remigration, by other antimitotic agents [C. Penit and F. Vasseur (1988) J. Immunol. 140, 3315] and produces an activation of proliferation of cells reentering into this organ. Proliferation, as demonstrated by a large increase in DNA synthesis and entrance into S phase, was kinetically related to an apparent increase in poly(ADP-ribose) polymerase activity in thymic cells and a highly significant in vitro ADP-ribosylation of histone H3. Since no DNA fragmentation occurred in thymic cells, as tested by a fluorometric technique [C. Birnboim and J. J. Jevac (1981) Cancer Res. 41, 1889], it is probable that a selective activation of poly(ADP-ribose) polymerase may have been induced in cells that undergo differentiation and proliferation while repopulating the thymus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-4827(89)90362-5DOI Listing

Publication Analysis

Top Keywords

thymic cells
20
vitro adp-ribosylation
8
adp-ribosylation histone
8
cells
8
polyadp-ribose polymerase
8
thymic
5
cellular regulation
4
adp-ribosylation
4
regulation adp-ribosylation
4
adp-ribosylation proteins
4

Similar Publications

iPSCs can serve as a renewable source of a consistent edited cell product, overcoming limitations of primary cells. While feeder-free generation of clinical grade iPSC-derived CD8 T cells has been achieved, differentiation of iPSC-derived CD4sp and regulatory T cells requires mouse stromal cells in an artificial thymic organoid. Here we report a serum- and feeder-free differentiation process suitable for large-scale production.

View Article and Find Full Text PDF

Introduction: Severe asthma is a chronic airway disease characterized by many pathomechanisms known as endotypes. Biological therapies targeting severe asthma endotypes have significantly improved the treatment of this disease, thus remarkably bettering patient quality of life.

Areas Covered: This review aims to describe current biological therapies for severe asthma, highlighting emerging ones.

View Article and Find Full Text PDF

Durable T cell immunity against cancer depends on the continual replenishment of effector CD8+ T cells. Thymic output has been correlated with favorable prognosis in cancer patients across a range of ages, suggesting that the thymus is an important source for replenishing T cells capable of controlling cancer progression. However, the effector potential of thymic mature CD8+ T cells and their regulation have not been clearly defined.

View Article and Find Full Text PDF

Unlabelled: Autoimmune regulator (AIRE), a transcription factor expressed by medullary thymic epithelial cells, is required for shaping the self-antigen tolerant T cell receptor repertoire. Humans with mutations in suffer from Autoimmune Polyglandular Syndrome Type 1 (APS-1). Among many symptoms, men with APS-1 commonly experience testicular insufficiency and infertility, but the mechanisms causing infertility are unknown.

View Article and Find Full Text PDF

The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a () mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!