A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Smartphone-based recognition of states and state changes in bipolar disorder patients. | LitMetric

Today's health care is difficult to imagine without the possibility to objectively measure various physiological parameters related to patients' symptoms (from temperature through blood pressure to complex tomographic procedures). Psychiatric care remains a notable exception that heavily relies on patient interviews and self-assessment. This is due to the fact that mental illnesses manifest themselves mainly in the way patients behave throughout their daily life and, until recently there were no "behavior measurement devices." This is now changing with the progress in wearable activity recognition and sensor enabled smartphones. In this paper, we introduce a system, which, based on smartphone-sensing is able to recognize depressive and manic states and detect state changes of patients suffering from bipolar disorder. Drawing upon a real-life dataset of ten patients, recorded over a time period of 12 weeks (in total over 800 days of data tracing 17 state changes) by four different sensing modalities, we could extract features corresponding to all disease-relevant aspects in behavior. Using these features, we gain recognition accuracies of 76% by fusing all sensor modalities and state change detection precision and recall of over 97%. This paper furthermore outlines the applicability of this system in the physician-patient relations in order to facilitate the life and treatment of bipolar patients.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2014.2343154DOI Listing

Publication Analysis

Top Keywords

state changes
12
bipolar disorder
8
patients
5
smartphone-based recognition
4
recognition states
4
state
4
states state
4
changes bipolar
4
disorder patients
4
patients today's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!