Multi-Electrode Arrays (MEA) have been widely used in neuroscience experiments. However, the reduction of their wireless transmission power consumption remains a major challenge. To resolve this challenge, an efficient on-chip signal compression method is essential. In this paper, we first introduce a signal-dependent Compressed Sensing (CS) approach that outperforms previous works in terms of compression rate and reconstruction quality. Using a publicly available database, our simulation results show that the proposed system is able to achieve a signal compression rate of 8 to 16 while guaranteeing almost perfect spike classification rate. Finally, we demonstrate power consumption measurements and area estimation of a test structure implemented using TSMC 0.18 μm process. We estimate the proposed system would occupy an area of around 200 μm ×300 μm per recording channel, and consumes 0.27 μ W operating at 20 KHz .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2013.2284254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!