Research on the one-electron reduced analogue of NO, namely nitroxyl (HNO/NO(-)), has revealed distinguishing properties regarding its utility as a therapeutic. However, the fleeting nature of HNO requires the design of donor molecules. Metal nitrosyl (MNO) complexes could serve as potential HNO donors. The synthesis, spectroscopic/structural characterization, and HNO donor properties of a {CoNO}(8) complex in a pyrrole/imine ligand frame are reported. The {CoNO}(8) complex [Co(LN4(PhCl))(NO)] (1) does not react with established HNO targets such as Fe(III) hemes or Ph3P. However, in the presence of stoichiometric H(+) 1 behaves as an HNO donor. Complex 1 readily reacts with [Fe(TPP)Cl] or Ph3P to afford the {FeNO}(7) porphyrin or Ph3P═O/Ph3P═NH, respectively. In the absence of an HNO target, the {Co(NO)2}(10) dinitrosyl (3) is the end product. Complex 1 also reacts with O2 to yield the corresponding Co(III)-η(1)-ONO2 (2) nitrato analogue. This report is the first to suggest an HNO donor role for {CoNO}(8) with biotargets such as Fe(III)-porphyrins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160269 | PMC |
http://dx.doi.org/10.1021/ja5064444 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!