Background & Aims: Hepatocyte-like cells, differentiated from different stem cell sources, are considered to have a range of possible therapeutic applications, including drug discovery, metabolic disease modelling, and cell transplantation. However, little is known about how stem cells differentiate into mature and functional hepatocytes.
Methods: Using transcriptomic screening, a transcription factor, liver X receptor α (NR1H3), was identified as increased during HepaRG cell hepatogenesis; this protein was also upregulated during embryonic stem cell and induced pluripotent stem cell differentiation.
Results: Overexpressing NR1H3 in human HepaRG cells promoted hepatic maturation; the hepatocyte-like cells exhibited various functions associated with mature hepatocytes, including cytochrome P450 (CYP) enzyme activity, secretion of urea and albumin, upregulation of hepatic-specific transcripts and an increase in glycogen storage. Importantly, the NR1H3-derived hepatocyte-like cells were able to rescue lethal fulminant hepatic failure using a non-obese diabetic/severe combined immunodeficient mouse model.
Conclusions: In this study, we found that NR1H3 accelerates hepatic differentiation through an HNF4α-dependent reciprocal network. This contributes to hepatogenesis and is therapeutically beneficial to liver disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhep.2014.07.025 | DOI Listing |
STAR Protoc
January 2025
Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands. Electronic address:
Cell competition is a quality control mechanism that promotes elimination of suboptimal cells relative to fitter neighbors. Cancer cells exploit these mechanisms for expansion, but the underlying molecular pathways remain elusive. Here, we present a protocol for generating matrix-free microtissues recapitulating cellular interactions between intestinal cancer and hepatocyte-like cells using microscopy or transcriptomics/proteomics.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago;
Obtaining stable hepatic cells in culture poses a significant challenge for liver studies. Bearing this in mind, an optimized method is depicted utilizing human induced pluripotent stem cells (hiPSCs) to generate 3D cultures of human hepatic organoids (HHOs). The utilization of HHOs offers a valuable approach to understanding liver development, unraveling liver diseases, conducting high-throughput studies for drug development, and exploring the potential for liver transplantation.
View Article and Find Full Text PDFRes Sq
December 2024
Nephrogenetics unit, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.
Similar to the mammalian hepatocytes, oenocytes accumulate fat during fasting, but it is unclear how they communicate with the fat body, the major lipid source. Using a modified protocol for prolonged starvation, we show that knockdown (KD) of the sole delta 9 desaturase, Desat1 (SCD in mammals), specifically in oenocytes leads to more saturated lipids in the hemolymph and reduced triacylglycerol (TAG) storage in the fat body. Additionally, oenocytes with KD exhibited an accumulation of lipoproteins and actin filaments at the cortex, which decreased lipoproteins in the hemolymph.
View Article and Find Full Text PDFbioRxiv
December 2024
Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Elevated cholesterol poses a significant cardiovascular risk, particularly in older women. The glucocorticoid receptor (GR), a crucial nuclear transcription factor that regulates the metabolism of virtually all major nutrients, harbors a still undefined role in cholesterol regulation. Here, we report that a coding single nucleotide polymorphism (SNP) in the gene encoding the GR, , associated with increased cholesterol levels in women according to UK Biobank and All Of Us datasets.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
The differentiation of mesenchymal stem cells (MSCs) into hepatocyte-like cells (HLCs) is considered one of the most promising strategies for alternative hepatocyte transplantation to treat end-stage liver disease. To advance this method, it is crucial to gain a deeper understanding of the mechanisms governing hepatogenic differentiation. The study demonstrated that suppression of the intracellular domain release of the Notch pathway receptor via the γ-secretase inhibitor N-[(3, 5-difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1, 1-dimethylethyl ester (DAPT) significantly promotes the expression of hepatocyte-related genes and proteins in HLCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!