We previously developed a novel one-step biotransformation process for the production of α-ketoglutarate (α-KG) from L-glutamic acid by a Bacillus subtilis whole-cell biocatalyst expressing an L-amino acid deaminase (pm1) of Proteus mirabilis. However, the biotransformation efficiency of this process was low owing to low substrate specificity and high α-KG degradation. In this study, we further improved α-KG production by protein engineering P. mirabilis pm1 and deleting the B. subtilis α-KG degradation pathway. We first performed three rounds of error-prone polymerase chain reaction and identified mutations at six sites (F110, A255, E349, R228, T249, and I352) that influence catalytic efficiency. We then performed site-saturation mutagenesis at these sites, and the mutant F110I/A255T/E349D/R228C/T249S/I352A increased the biotransformation ratio of L-glutamic acid from 31% to 83.25% and the α-KG titer from 4.65 g/L to 10.08 g/L. Next, the reaction kinetics and biochemical properties of the mutant were analyzed. The Michaelis constant for L-glutamic acid decreased from 49.21 mM to 23.58 mM, and the maximum rate of α-KG production increased from 22.82 μM min(-1) to 56.7 μM min(-1). Finally, the sucA gene, encoding α-ketodehydrogenase, was deleted to reduce α-KG degradation, increasing the α-KG titer from 10.08 g/L to 12.21 g/L. Protein engineering of P. mirabilis pm1 and deletion of the α-KG degradation pathway in B. subtilis improved α-KG production over that of previously developed processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2014.07.431 | DOI Listing |
Vet Res Commun
April 2024
Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, BA, 40170-110, Brazil.
Zinc (Zn) is an essential micronutrient that plays a crucial role in fish development and physiology. This study aimed to evaluate the effects on growth and health in Nile tilapia (Oreochromis niloticus) supplemented with graded levels of zinc amino acid complex (Zn-AA) and subjected to transport stress. Nile tilapia (21.
View Article and Find Full Text PDFThe abnormal phosphorylation of tau is a necessary precursor to the formation of tau fibrils, a marker of Alzheimer's disease. We hypothesize that hyperphosphorylative conditions may result in unique cell surface markers. We identify and demonstrate the utility of such surrogate markers to identify the hyperphosphorylative state.
View Article and Find Full Text PDFAnim Biotechnol
December 2023
Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
Orange peel and its extract are good sources of phenols and vitamin C that can be used as powerful antioxidants and antibacterial. The effects of dietary ascorbic acid (AA), orange peel powder (OPP) and orange peel extract (OPE) supplementations on growth performance, blood biochemicals, gene expression and antioxidant status of growing rabbits under hot conditions were investigated. A total of 80 weaned Giant Flander male rabbits, five weeks old (606.
View Article and Find Full Text PDFEnviron Pollut
July 2022
Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Avenida Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain; Public Health Laboratory of Valencia, Avenida Cataluña, 21, 46020, Valencia, Spain.
Acrylamide (AA) is an organic contaminant that naturally forms in starchy foods during high-temperature cooking under low-moisture conditions. It is mainly produced from the sugars and amino acids present in food by the Maillard reaction. When humans are exposed to AA, AA is eliminated in the urine as mercapturic acid conjugates, primarily including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA3), and N-acetyl-3-[(3-amino-3-oxopropyl)sulfinyl]-L-alanine (AAMA-Sul), which are used as exposure biomarkers of AA in human biomonitoring studies.
View Article and Find Full Text PDFCurr Res Toxicol
June 2020
Laboratory of Reproductive Toxicology, Department of Medicine, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, 85040-080 Parana, Brazil.
Some endocrine-disrupting chemicals (EDCs) can affect the endocrine system through covalent interactions with specific sites, leading to deregulation of physiological homeostasis. The acrylamide (AA) present in some fried or baked foods is an example of an electrophile molecule that is able to form adducts with nucleophilic regions of nervous system proteins leading to neurological defects. A positive correlation between increased urinary AA metabolite concentration and reduced levels of thyroid hormones (TH) was described in adolescents and young adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!