A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling of human exposure to benzene in urban environments. | LitMetric

Modeling of human exposure to benzene in urban environments.

J Toxicol Environ Health A

a CITTA, Department of Civil Engineering, FCTUC , University of Coimbra, Coimbra , Portugal.

Published: September 2014

Urban areas characterized by high spatial and temporal variability in air pollution levels require implementation of comprehensive approaches to address exposure of individuals. The main objective of this study was to implement a quantitative assessment of individual exposure to benzene in urban environments. For this purpose, ExPOSITION model based on a global positioning system (GPS) tracking approach was applied to estimate individual exposure in different microenvironments. The current investigation provides an application example and validation of the modeling approach against personal and biological exposure measurements collected during the measurements campaign. The probabilistic approach using the Johnson system of distributions was implemented to characterize variability of indoor concentrations. The results obtained for daily average individual exposure to benzene corresponded to mean levels of 1.6 and 0.8-2.7 μg/m(3) in terms of 5th-95th percentiles. Validation of the model results against several personal exposure samples collected for the selected individuals revealed a Pearson's correlation coefficient of .66. This modeling approach explicitly addressed the temporal and spatial variability in the exposure and established a source-receptor relationship.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2014.909299DOI Listing

Publication Analysis

Top Keywords

exposure benzene
12
individual exposure
12
exposure
8
benzene urban
8
urban environments
8
modeling approach
8
modeling human
4
human exposure
4
environments urban
4
urban areas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!