Effective blue light photodynamic therapy does not affect cutaneous langerhans cell number or oxidatively damage DNA.

Dermatol Surg

*Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts; †Trokhan Dermatology, Closter, New Jersey; ‡Division of Dermatology, Vanderbilt University School of Medicine, Nashville, Tennessee.

Published: September 2014

Background: Photodynamic therapy (PDT) using aminolevulinic acid (ALA) with blue light or red light is effective for treating actinic keratoses (AKs). However, immunosuppression follows red light PDT, raising the spectre of skin cancer promotion in treated skin.

Objective: To determine whether broad-area short incubation (BASI)-ALA-PDT using blue light immunosuppression immunosuppresses treated skin.

Methods: Patients were evaluated clinically and by standardized facial biopsies of non-AK skin before, 24 hours and 1 month after customary blue light BASI-ALA-PDT. All biopsies were stained for markers of epidermal atypia and Langerhans cells (LCs); and at 24 hours to detect oxidative DNA damage.

Results: Patients had an 81% reduction in AKs and slight improvement in clinical and histologic signs of photoaging after 1 month. The biopsied chronically photodamaged skin without clinically detectable AKs showed no effect of PDT on the LC number, distribution, or morphology; and no oxidative DNA damage, in contrast to the changes reported after customary red light PDT.

Conclusion: Customary blue light BASI-ALA-PDT does not affect the LC number or produce oxidative DNA damage, the sequelae of red light PDT responsible for immunosuppression in treated skin.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.DSS.0000452624.01889.8aDOI Listing

Publication Analysis

Top Keywords

blue light
20
red light
16
oxidative dna
12
light
9
photodynamic therapy
8
light pdt
8
customary blue
8
light basi-ala-pdt
8
dna damage
8
effective blue
4

Similar Publications

The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species.

View Article and Find Full Text PDF

The study focused on converting tea bag waste into strong fluorescence carbon quantum dots (TBW-CQDs) for the detection of acrylamide in drinking water, antimicrobial activity, and photocatalytic degradation. The TBW-CQDs exhibited blue luminescence and maximum absorbance at 287 nm under UV light and distinctive fluorescence emission and excitation wavelengths at 425 nm and 287 nm, respectively. TBW-CQDs revealed a particle size of 8.

View Article and Find Full Text PDF

Phosphor-converted light-emitting diodes in the marine environment: current status and future trends.

Chem Sci

January 2025

Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 P. R. China

The exploitation and utilization of resources in marine environments have ignited a demand for advanced illumination and optical communication technologies. Light-emitting diodes (LEDs), heralded as "green lighting sources", offer a compelling solution to the technical challenges of marine exploration due to their inherent advantages. Among the myriad of LED technologies, phosphor-converted light-emitting diodes (pc-LEDs) have emerged as frontrunners in marine applications.

View Article and Find Full Text PDF

The regulation of PKC epsilon (PKCepsilon) and its downstream effects is still not fully understood, making it challenging to develop targeted therapies or interventions. A more precise tool that enables spatiotemporal control of PKCepsilon activity is thus required. Here, we describe a photo-activatable optogenetic PKCepsilon probe (Opto-PKCepsilon) consisting of an engineered PKCepsilon catalytic domain and a blue-light inducible dimerization domain.

View Article and Find Full Text PDF

Effective engineering of nanostructured materials provides a scope to explore the underlying photoelectric phenomenon completely. A simple cost-effective chemical reduction route is taken to grow nanoparticles of Cd Zn S with varying = 1, 0.7, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!