Automated analysis of invadopodia dynamics in live cells.

PeerJ

UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC , USA ; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC , USA ; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC , USA.

Published: July 2014

Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103095PMC
http://dx.doi.org/10.7717/peerj.462DOI Listing

Publication Analysis

Top Keywords

invadopodia
10
changes invadopodia
8
invadopodia formation
8
automated analysis
4
analysis invadopodia
4
invadopodia dynamics
4
dynamics live
4
live cells
4
cells multiple
4
cell
4

Similar Publications

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently hyperactivated in triple-negative breast cancers (TNBCs) associated with poor prognosis and is a therapeutic target in breast cancer management. Here, we describe the effects of repression of mTOR-containing complex 1 (mTORC1) through knockdown of several key mTORC1 components or with mTOR inhibitors used in cancer therapy. mTORC1 repression results in an ∼10-fold increase in extracellular matrix proteolytic degradation.

View Article and Find Full Text PDF

NOX proteins and ROS generation: role in invadopodia formation and cancer cell invasion.

Biol Res

December 2024

Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile.

NADPH oxidases (NOX) are membrane-bound proteins involved in the localized generation of reactive oxygen species (ROS) at the cellular surface. In cancer, these highly reactive molecules primarily originate in mitochondria and via NOX, playing a crucial role in regulating fundamental cellular processes such as cell survival, angiogenesis, migration, invasion, and metastasis. The NOX protein family comprises seven members (NOX1-5 and DUOX1-2), each sharing a catalytic domain and an intracellular dehydrogenase site.

View Article and Find Full Text PDF

Technology Innovation for Discovering Renal Autoantibodies in Autoimmune Conditions.

Int J Mol Sci

November 2024

Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gaslini, 16147 Genova, Italy.

Autoimmune glomerulonephritis is a homogeneous area of renal pathology with clinical relevance in terms of its numerical impact and difficulties in its treatment. Systemic lupus erythematosus/lupus nephritis and membranous nephropathy are the two most frequent autoimmune conditions with clinical relevance. They are characterized by glomerular deposition of circulating autoantibodies that recognize glomerular antigens.

View Article and Find Full Text PDF

Are hypoxia-related proteins associated with the invasiveness of glandular odontogenic cysts? A multicenter study.

Arch Oral Biol

November 2024

Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil. Electronic address:

Objective: The study aimed to investigate the expression of hypoxia markers associated with invadopodia in glandular odontogenic cysts and to explore an association between this expression with the aggressive biological behaviour of this odontogenic cyst.

Design: Immunohistochemistry was employed to assess the expression of hypoxia-inducible factor 1 alpha (HIF-1α), notch homologous protein of the neurogenic locus 1 (NOTCH-1), disintegrin and metalloproteinase-12 (ADAM-12), and heparin-binding epidermal growth factor (HB-EGF) in 17 samples of glandular odontogenic cysts, 10 samples of calcifying odontogenic cysts, and 10 samples of dental follicles.

Results: The glandular odontogenic cyst samples exhibited increased expression of HIF-1α, NOTCH-1, ADAM-12 and HBEGF proteins compared with calcifying odontogenic cyst and dental follicle samples.

View Article and Find Full Text PDF

Autophagy Regulator Rufy 4 Promotes Osteoclastic Bone Resorption by Orchestrating Cytoskeletal Organization via Its RUN Domain.

Cells

October 2024

Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.

Rufy4, a protein belonging to the RUN and FYVE domain-containing protein family, participates in various cellular processes such as autophagy and intracellular trafficking. However, its role in osteoclast-mediated bone resorption remains uncertain. In this study, we investigated the expression and role of the gene in osteoclasts using small interfering RNA (siRNA) transfection and gene overexpression systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!