In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work's major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups' differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102358PMC
http://dx.doi.org/10.1364/BOE.5.002184DOI Listing

Publication Analysis

Top Keywords

hemodynamic responses
8
spectroscopic imaging
8
hemodynamic response
8
exploring diazepam's
4
hemodynamic
4
diazepam's hemodynamic
4
responses mouse
4
mouse brain
4
brain tissue
4
tissue optical
4

Similar Publications

Aims: This study aimed to explore the brain activity characteristics of individuals with Internet Gaming Disorder (IGD) during mobile gameplay, focusing on neural responses to positive and negative game events. The findings may enhance our understanding of the neural mechanisms underlying IGD.

Methods: Functional near-infrared spectroscopy (fNIRS) was employed to measure hemodynamic responses (HbO/HbR) in the prefrontal cortex of both IGD participants and recreational gaming users (RGU), during solo and multiplayer mobile gameplay.

View Article and Find Full Text PDF

Pharmacogenetic and pharmacokinetic factors for dexmedetomidine-associated hemodynamic instability in pediatric patients.

Front Pharmacol

January 2025

Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.

Purpose: The incidence of hemodynamic instability associated with dexmedetomidine (DEX) sedation has been reported to exceed 50%, with substantial inter-individual variability in response. Genetic factors have been suggested to contribute significantly to such variation. The aim of this study was to identify the clinical, pharmacokinetic, and genetic factors associated with DEX-induced hemodynamic instability in pediatric anesthesia patients.

View Article and Find Full Text PDF

Background: Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) can induce accelerated regeneration of future liver remnant (FLR) and effectively reduce the occurrence of liver failure due to insufficient FLR after hepatectomy, thereby increasing the probability of radical resection for previously inoperable patients with liver cancer. However, the exact mechanism by which ALPPS accelerates liver regeneration remains elusive.

Methods: A review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases in March of 2024.

View Article and Find Full Text PDF

Inadequate information exists regarding physiological changes post-COVID-19 infection. We used smart beds to record biometric data following COVID-19 infection in nonhospitalized patients. Recordings of daily biometric signals over 14 weeks in 59 COVID-positive participants' homes in 2020 were compared with the same participants' data from 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!