Background: Synovial sarcoma (SS) is an aggressive soft-tissue tumor. Despite being considered as a chemosensitive disease, the real impact of perioperative chemotherapy on metastasis-free survival (MFS) is controversial. We have shown that metastatic relapse of SS is strongly associated with genomic complexity. There are no data regarding the potential correlation between genomic complexity and response to chemotherapy.
Patients And Methods: The study population included 65 SS patients diagnosed between 1991 and 2013 and with available tissue material. Genomic profiling was carried out by using array-CGH. Forty-five SS out of the 65 patients were treated with neoadjuvant anthracycline/ifosfamide-based chemotherapy. Radiological response was assessed according to RECIST criteria. Histological response was defined by the percentage of recognizable tumor cells on the surgical specimen.
Results: Genomic complexity was significantly associated with MFS. However, there was no statistically significant association between radiological or histological response and genomic complexity.
Conclusion: The absence of significant association between response to chemotherapy and genomic complexity suggests that the prognostic value of chromosome instability in SS is independent of response to chemotherapy; mechanisms leading to metastatic relapse of SS are intrinsic to the biology of the tumor and current cytotoxic drugs are only poorly efficient to prevent it.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207728 | PMC |
http://dx.doi.org/10.1093/annonc/mdu362 | DOI Listing |
Arch Bronconeumol
December 2024
Pulmonology Service, Cruces University Hospital (OSI EEC), Barakaldo, Spain; BioBizkaia Health Research Institute, Spain.
The Spanish Society of Pneumology and Thoracic Surgery (SEPAR) and the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) have developed together Clinical Practice Guidelines (GPC) on the management of people affected by tuberculosis (TB) resistant to drugs with activity against Mycobacterium tuberculosis. These clinical practice guidelines include the latest updates of the SEPAR regulations for the diagnosis and treatment of drug-resistant TB from 2017 and 2020 as the starting point. The methodology included asking relevant clinical questions based on PICO methodology, a literature search focusing on each question, and a systematic and comprehensive evaluation of the evidence, with a summary of this evidence for each question.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Lebniz Int Proc Inform
August 2024
Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
Modern sequencing technologies allow for the addition of short-sequence tags, known as anchors, to both ends of a captured molecule. Anchors are useful in assembling the full-length sequence of a captured molecule as they can be used to accurately determine the endpoints. One representative of such anchor-enabled technology is LoopSeq Solo, a synthetic long read (SLR) sequencing protocol.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
Post-transcriptional mechanisms, such as alternative splicing and polyadenylation, are recognized as critical regulatory processes that increase transcriptomic and proteomic diversity. The advent of next-generation sequencing and whole-genome analyses has revealed that numerous transcription and epigenetic regulators, including transcription factors and histone-modifying enzymes, undergo alternative splicing, most notably in the nervous system. Given the complexity of regulatory processes in the brain, it is conceivable that many of these splice variants control different aspects of neuronal development.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Biology, Hunan University, Changsha, China.
Introduction: Dengue viruses (DENVs), the causative agents of dengue hemorrhagic fever and dengue shock syndrome, undergo genetic mutations that result in new strains and lead to ongoing global re-infections.
Objectives: To address the growing complexity of identifying and tracking biological samples, this study screened RNA barcode segments for the four DENV serotypes, ensuring high specificity and recall rates for DENV identification using segments.
Results: Through analyzing complete genome sequences of DENVs, we screened eight barcode segments for DENV, DENV-1, DENV-2, DENV-3, and DENV-4 identification.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!