Taxol was originally isolated from the yew Taxus brevifolia. Because taxol inhibits the depolymerization of microtubules, the presence of a self-resistance mechanism in Taxus spp. was hypothesized. The cloning of the cDNA for alpha and beta tubulins from Taxus cuspidata and those from the human embryonic kidney cell line HEK293T revealed that the (26)Asp, (359)Arg, and (361)Leu residues in the human beta tubulin, which are important for taxol binding, were replaced with Glu, Trp, and Met in the beta tubulin of T. cuspidata, respectively. The microtubule assembly of the recombinant alpha and beta tubulins was monitored turbidimetrically, and the results clearly demonstrated that the microtubule from T. cuspidata is less sensitive to taxol than that from HEK293T cells. The Taxus microtubule composed of the wild-type alpha tubulin and the beta tubulin with the E26D mutation restored the sensitivity to taxol. We thus postulated that the mutation identified in the beta tubulin of T. cuspidata plays a role in the self-resistance of this species against taxol.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09168451.2014.940837DOI Listing

Publication Analysis

Top Keywords

beta tubulin
16
alpha beta
12
beta tubulins
12
recombinant alpha
8
yew taxus
8
taxus cuspidata
8
microtubule assembly
8
tubulin cuspidata
8
beta
7
taxol
7

Similar Publications

Data-Driven Equation-Free Dynamics Applied to Many-Protein Complexes: The Microtubule Tip Relaxation.

Biophys J

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.

View Article and Find Full Text PDF

Peri-centrosomal localization of small interfering RNAs in C. elegans.

Sci China Life Sci

January 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.

The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C.

View Article and Find Full Text PDF

NME7 maintains primary cilium assembly, ciliary microtubule stability, and Hedgehog signaling.

Life Sci Alliance

April 2025

https://ror.org/0040axw97 Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China

NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

View Article and Find Full Text PDF

Dual-targeting inhibitors involving tubulin for the treatment of cancer.

Bioorg Chem

December 2024

Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India. Electronic address:

Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!