The prototype strain LEIV-K306 of the Batken virus (BKNV) was isolated from the Ixodidae ticks Hyalomma marginatum Koch, 1844 collected from sheep near town Batken (Kirgizstan) in the April 1970. Later, the BKNV was isolated in Kirgizstan from the mixed pool of the Aedes caspius Pallas, 1771 and Culex hortensis Ficalbi, 1889 mosquitoes. From the very beginning, the BKNV was discussed to be very close to the Dhori virus (DHOV) (Orthomyxoviridae, Thogotovirus) isolated from the Ixodidae ticks Hyalomma dromedarii Koch, 1844 in India. In this work, virtually complete genome sequence (MiSeq, Illumina) of the BKNV was determined (ID GenBank KJ396672-4). Structural and non-structural proteins of the BKNV have a high level of homology with DHOV - 98% (PB1) and 96% (PB2, PA, NP, M). Homology of HA protein between the BKNV and DHOV is 90%, which accounts for antigenic difference between these close relative viruses. Since the differences in the other structural and non-structural proteins are about 96-98%, the BKNV could be suggested as the topotypic DHOV strain for Central Asia, Transcaucasia, and Northern Caspian region. The evolution divergence of the BKNV and DHOV for HA could be explained by local ecologic peculiarities of the BKNV areal.
Download full-text PDF |
Source |
---|
PLoS Negl Trop Dis
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, P.R. China.
Background: Tick-borne infectious diseases caused by the spotted fever group Rickettsia (SFGR) have continuously emerging, with many previously unidentified SFGR species reported. The prevalence of SFGRs in northwestern China remains unclear. This study aimed to examine the prevalence of SFGRs and Anaplasma species by analyzing tick samples collected from the Ningxia region.
View Article and Find Full Text PDFJ Virol
December 2024
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
Emerging tick-borne orthonairovirus infections pose a growing global concern, with limited understanding of the viral ovarian tumor-like cysteine proteases (vOTUs) encoded by novel orthonairoviruses. These vOTUs, a group of deubiquinylases (DUBs), disrupt the innate immune response. Yezo virus (YEZV), a recently discovered pathogenic orthonairovirus, was first reported in Japan in 2021.
View Article and Find Full Text PDFAnn Agric Environ Med
December 2024
Department of Health Biohazards and Parasitology, Institute of Rural Health, Lublin, Poland.
Introduction And Objective: Parasites of the genus are intracellular protozoa that infect the leukocytes and erythrocytes of animals, causing theileriosis. The aim of the study was to examine the presence of spp. in adult ticks and their offspring in the Lublin region of eastern Poland.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
Division of Vector Biology and Control, Indian Council of Medical Research - Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India. Electronic address:
Hard tick exoskeletons, composed primarily of chitin, pose a significant challenge for researchers attempting to extract genetic material. This study presents a simple modified, alternative method for extracting DNA from ethanol-preserved hard ticks. The extracted DNA was further used for PCR amplification of phylogenetic markers for population genetics studies.
View Article and Find Full Text PDFTicks Tick Borne Dis
December 2024
Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, the Netherlands.
Biological control of ticks using entomopathogenic fungi (EPF) is a highly desired alternative to chemical acaricides for the control of tick-borne pathogens. For Metarhizium anisopliae isolate ICIPE 7, one of these EPFs, efficacy against multiple tick species has been demonstrated in laboratory and field settings. However, we currently have little quantitative understanding of how EPFs can impact transmission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!