Objective: Healthy young adults are presumed to be in their cognitive prime, yet emerging evidence indicates that regular engagement in physical activity can still benefit their cognitive functioning. The mechanisms supporting these exercise-related cognitive benefits remain unclear, but recent research points to cerebral blood-flow (CBF) regulation as potentially important. The current study investigated the possibility that efficacy of CBF regulation underpins exercise-cognition links in this high functioning population.

Method: In 55 healthy young adults, cognitive control performance (inhibition and switching) was examined in relation to habitual physical activity, aerobic fitness, and CBF regulation (evidenced by blood-flow responsiveness to increases and decreases in carbon dioxide: hypercapnic reactivity, n = 43, and hypocapnic reactivity, n = 42).

Results: Multiple regression analyses revealed that more frequent physical activity, and to some extent better aerobic fitness, predicted both better CBF regulation and better cognitive inhibitory control. CBF regulation also predicted better cognitive inhibitory control. Moreover, mediation analyses indicated that more frequent participation in physical activity may bring about improvements in cognitive inhibitory control through improved CBF regulation.

Conclusion: These results provide novel insight into the cognitive and cerebrovascular benefits that may be gained with regular engagement in physical activity, even in a high-functioning population. Moreover, they point to better CBF regulation as a specific mechanism that may drive physical activity-related cognitive benefits, which converges with recent data in older women (Brown et al., 2010).

Download full-text PDF

Source
http://dx.doi.org/10.1037/neu0000124DOI Listing

Publication Analysis

Top Keywords

cbf regulation
24
physical activity
20
healthy young
12
young adults
12
cognitive inhibitory
12
inhibitory control
12
cognitive
9
cerebral blood-flow
8
exercise-cognition links
8
regular engagement
8

Similar Publications

ScDREBA5 Enhances Cold Tolerance by Regulating Photosynthetic and Antioxidant Genes in the Desert Moss Syntrichia caninervis.

Plant Cell Environ

December 2024

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.

Extreme cold events, becoming more frequent, affect plant growth and development. Much is known about C-repeat binding transcription factor (CBF)-dependent cold-signaling pathways in plants. However, the CBF-independent regulatory pathway in angiosperms is unclear, and the cold-signaling pathways in non-angiosperms lacking CBFs, such as the extremely cold-tolerant desert moss Syntrichia caninervis, are largely unknown.

View Article and Find Full Text PDF

This paper investigates the safety control problem of a bicycle robot with front-wheel drive and without a trail or mechanical regulator during circular motion. Constraints on the drive angular speed necessary for the bicycle to achieve circular motion are proposed. In practical robot systems, bounded input disturbances are inevitable.

View Article and Find Full Text PDF

Comprehensive analysis of amino acid/auxin permease family genes reveal the positive role of GhAAAP128 in cotton tolerance to cold stress.

Int J Biol Macromol

December 2024

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:

Amino acid/auxin permeases (AAAPs) play crucial roles in plant development and response to environmental stimuli. They have been characterized at genome-wide levels in several plant species. However, little is known about the AAAP genes in Gossypium.

View Article and Find Full Text PDF

Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease.

J Neuroinflammation

December 2024

Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.

Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF).

View Article and Find Full Text PDF

Heart failure (HF) is associated with progressive reduction in cerebral blood flow (CBF) and neurodegenerative changes leading to cognitive decline. The glymphatic system is crucial for the brain's waste removal, and its dysfunction is linked to neurodegeneration. In this study, we used a mouse model of HF, induced by myocardial infarction (MI), to investigate the effects of HF with reduced ejection fraction on the brain's glymphatic function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!